TEORIA DEGLI INSIEMI B, A.A. 2023/24

MARCO FORTI

1. CARDINAL ARITHMETIC

1.1. The cofinality of cadinals. The general definition of cof A as the smallest order-type of a well-ordered cofinal subset of the ordered set A, when applied to cardinals has the following useful characterization:

$$\operatorname{cof} \kappa = \min \{ |I| \mid \kappa = \sum_{i \in I} \kappa_i, \quad with \ \kappa_i < \kappa \ \forall i \in I \}.$$

Recall that a cardinal is regular if $cof \kappa = \kappa$ and singular otherwise. It follows that all successor cardinals are regular, because

$$\sum_{i \in I} \kappa_i = \max\left(|I|, \sup_I \kappa_i\right).$$

On the other hand, $\operatorname{cof} \aleph_{\alpha} = \operatorname{cof} \alpha \leq \alpha$, so most limit cardinals are singular. A regular limit cardinal is called weakly inaccessible.

1.2. König-Zermelo inequality. The basic strict inequality among cardinals is the König-Zermelo inequality

$$\forall i \in I \; \kappa_i < \nu_i \implies \sum_{i \in I} \kappa_i < \prod_{i \in I} \nu_i,$$

that actually implies all known strict inequalities in cardinal arithmetic.

E.g. Cantor's Theorem $2^{|I|} > |I|$ follows by putting $\kappa_i = 1$ and $\nu_i = 2$.

More generally one obtains $\operatorname{cof} \kappa^{\nu} > \nu$, namely, for $\alpha < \nu$ let $\kappa_{\alpha} < \kappa^{\nu}$; then

$$\sum_{\alpha < \nu} \kappa_{\alpha} < \prod_{\alpha < \nu} \kappa^{\nu} = (\kappa^{\nu})^{\nu} = \kappa^{\nu}.$$

1.3. The power in base 2. The cardinal $2^{\kappa} = |\mathcal{P}(\kappa)|$ satisfies the monotonicity condition

 $(d1) \qquad \qquad \mu \le \kappa \implies 2^{\mu} \le 2^{\kappa}$

together with the inequalities

(d2)
$$\aleph_0^{\kappa} = 2^{\kappa} \ge \inf 2^{\kappa} > \kappa$$

The behaviour of the function $\nu \mapsto 2^{\nu}$ on regular cardinal is completely free apart of the above constraints, namely

Theorem. (Easton) Let $F : Reg \to Card$ be a (class) function satisfying (d1) and (d2). Then it is consistent with ZFC that $2^{\nu} = F(\nu)$ for all regular cardinals ν .

1.4. The singular cardinal case.

Lemma. Put
$$\exists (\xi) = \xi^{\operatorname{cof} \xi}$$
 and $2^{<\nu} = \sup\{2^{\xi} \mid \xi < \nu\}$. Then
(d3) $2^{\nu} = (2^{<\nu})^{\operatorname{cof} \nu}$ for all cardinals ν .

It follows

Theorem. (Buchowski-Hechler) Let ν be singular; then

$$(d4) 2^{\nu} = \begin{cases} 2^{<\nu} & \text{if } \exists \kappa < \nu \ \forall \xi \ (\kappa \le \xi < \nu \ \Rightarrow \ 2^{\xi} = 2^{\kappa}) \\ \beth(2^{<\nu}) & \text{otherwise.} \end{cases}$$

So the power 2^{ν} for singular ν is determined by the function \beth on singular cardinals, together with the power $2^{\kappa} = \kappa^{\kappa} = \beth(\kappa)$ of regular cardinals $\kappa < \nu$ (in fact $2^{<\nu} = \sup\{2^{\xi^+} \mid \xi < \nu\}$ for singular ν).

1.5. Cardinal power. The cardinal exponentiation κ^{ν} satisfies the obvious relations

$$(e1) \qquad \qquad \lambda \le \kappa \implies \lambda^{\nu} \le \kappa^{\nu}$$

$$(e2) \qquad \qquad \mu \le \nu, \implies \kappa^{\mu} \le \kappa^{i}$$

(e3)
$$\xi < \kappa, \ \xi^{\nu} \ge \kappa \implies \xi^{\nu} = \kappa^{\nu}$$

together with the strict inequalities

(e4)
$$\operatorname{cof} \kappa^{\nu} > \nu \quad and \quad \kappa^{\operatorname{cof} \kappa} > \kappa$$

It turns out that the gimel function $\exists (\kappa) = \kappa^{\operatorname{cof} \kappa}$ completely determines the cardinal exponentiation.

(But clearly $\beth(\kappa) = \kappa^{\kappa} = 2^{\kappa}$ for regular κ .)

Lemma. Assume that $\nu < \operatorname{cof} \kappa$ and let $f : \nu \to \kappa$ be given. Then there exists $\alpha \in \kappa$ s.t. $f[\nu] \subseteq \alpha$, whence ${}^{\nu}\kappa \subseteq \bigcup_{\alpha \in \kappa} {}^{\nu}\alpha$. Hence

(e5)
$$\nu < \operatorname{cof} \kappa \implies \kappa^{\nu} = \sum_{\xi < \kappa} \xi^{\nu} \xi^{+}$$

 $\mathbf{2}$

It follows the Hausdorff formula $(\kappa^+)^{\nu} = \kappa^{\nu} \kappa^+$ and in general

(e6) $(\aleph_{\alpha+n})^{\nu} = \aleph_{\alpha}^{\nu} \aleph_{\alpha+n}$ for all α and all n

Lemma. Let κ be a limit cardinal, and let $\nu \geq \operatorname{cof} \kappa$. Then

(e7)
$$\nu \ge \operatorname{cof} \kappa \implies \kappa^{\nu} = (\sup_{\xi < \kappa} \xi^{\nu})^{\operatorname{cof} \kappa} \quad (\kappa \ limit)$$

Theorem. (Buchowski)

$$(e8) \quad \kappa^{\nu} = \begin{cases} 2^{\nu} & \text{if } \kappa \leq 2^{\nu} \quad (\text{in particular if } \nu \geq \kappa), \\ \kappa & \text{if } \nu < \operatorname{cof} \kappa \text{ and } \forall \xi < \kappa \, (\xi^{\nu} \leq \kappa), \\ \beth(\kappa) & \text{if } \kappa > \nu \geq \operatorname{cof} \kappa \text{ and } \forall \xi < \kappa \, (\xi^{\nu} < \kappa), \\ \beth(\zeta) & \text{otherwise, where } \zeta = \min \, \{\xi < \kappa \mid \xi^{\nu} \geq \kappa\}. \end{cases}$$

Remark that the last two cases may occur only when κ , resp. ζ are singular. The function \exists is not required for regular κ (actually $\exists(\kappa) = 2^{\kappa}$ for regular κ .)

1.6. Special hypotheses. Assuming the Generalized Continuum Hypothesis

(GCH) $2^{\kappa} = \kappa^+$ for all infinite κ

all cardinal powers are determined, and assume the least consistent value, namely

Corollary ((GCH)).
$$\kappa^{\nu} = \begin{cases} \kappa & \text{if } \nu < \operatorname{cof} \kappa, \\ \kappa^{+} & \text{if } \kappa > \nu \ge \operatorname{cof} \kappa, \\ \nu^{+} & \text{if } \nu \ge \kappa. \end{cases}$$

GCH being notoriously (almost) totally independent on regular cardinals, one formulated the **Singular Cardinals Hypothesis** (SCH) $2^{\operatorname{cof} \kappa} < \kappa \implies \kappa^{\operatorname{cof} \kappa} = \kappa^+$ for all singular κ Assuming (SCH), all cardinal powers are determined, and assume the least values consistent with the powes 2^{ν} of the regular cardinals ν , namely

Corollary ((SCH)).

(i) for all
$$\kappa, \nu$$
 $\kappa^{\nu} = \begin{cases} 2^{\nu} & \text{if } \kappa \leq 2^{\nu} \text{ (in part. if } \nu \geq \kappa), \\ \kappa & \text{if } \nu < \operatorname{cof} \kappa \text{ and } 2^{\nu} < \kappa, \\ \kappa^{+} & \text{if } \kappa > \nu \geq \operatorname{cof} \kappa \text{ and } 2^{\nu} < \kappa. \end{cases}$
(ii) for singular ν $2^{\nu} = \begin{cases} 2^{<\nu} & \text{if } \exists \kappa < \nu \ 2^{\kappa} = 2^{<\nu}, \\ (2^{<\nu})^{+} & \text{otherwise.} \end{cases}$

1.7. Tarski's theorem on products.

Theorem (Tarski). Let ν be an infinite cardinal, and let the ν -sequence of cardinals $\langle \kappa_{\alpha} | \alpha < \nu \rangle$ be weakly increasing, i.e. s.t. $0 < \kappa_{\alpha} \leq \kappa_{\beta}$ for $\alpha < \beta < \nu$. Then

(e9)
$$\prod_{\gamma < \nu} \kappa_{\gamma} = (\sup_{\gamma < \nu} \kappa_{\gamma})^{\nu}.$$

Remark that the conditions of *weak monotonicity* and of *cardinal length* are always separately satisfiable, but not both together, in general.

1.8. Shelah's pcf theory. Let $a \subseteq Reg$ be a set of regular cardinals, which we assume to be an interval $[\aleph_{\alpha}, \aleph_{\delta}) \cap Reg$ of length $|a| < \aleph_{\alpha}$. Define

$$pcf(a) = \{ cof (\prod_{\kappa \in a} \kappa / \mathcal{D}) \mid \mathcal{D} \ ultrafilter \ on \ a \}, \text{ and} \\ pcf_{\mu}(a) = \bigcup \{ pcf(b) \mid b \subseteq a, |b| \le \mu \}, \text{ for } \mu \le |a|$$

Lemma. For all $\mu \leq |a|$:

- (1) $a \subseteq pcf_{\mu}(a)$, and $\sup pcf_{\mu}(a) \leq (\sup a)^{\mu}$;
- (2) min $pcf_{\mu}(a) = \min a$.

The following theorems are the essential part of Shelah's pcf theory (their elementary, but very complicated, proofs are contained in Holz, Steffens, and Weitz, ch 6,7, 8,9).

Let $a = [\aleph_{\alpha}, \aleph_{\delta}) \cap Reg$ and $\mu \leq |a| < \aleph_{\alpha}$. Then

Theorem 1.1. $pcf_{\mu}(a) = [\aleph_{\alpha}, \aleph_{\gamma}] \cap Reg,$ with \aleph_{γ} regular $\geq \aleph_{\delta}$ and $|\gamma \setminus \alpha| \leq |\delta \setminus \alpha|^{\mu}$.

Theorem 1.2. If $\kappa^{\mu} < \aleph_{\alpha}$ for all $\kappa < \aleph_{\alpha}$, then $\aleph_{\gamma} = \aleph_{\delta}^{\mu}$.

Theorem 1.3. $|pcf_{\mu}(a)| \le |a|^{+++} \le |\delta|^{+++}.$

Recall that $a = [\aleph_{\alpha}, \aleph_{\delta}) \cap Reg$ and $\mu \leq |a| < \aleph_{\alpha}$.

Corollary. Let δ be limit. Then

$$\kappa^{\mu} < \aleph_{\alpha} \text{ for all } \kappa < \aleph_{\alpha} \implies \aleph^{\mu}_{\delta} < \aleph_{\alpha + |pcf_{\mu}(a)|^{+}},$$

hence $\mu < \aleph_{\delta} \implies \aleph_{\delta}^{\mu} < \aleph_{(|\delta|^{\mu})^{+}}.$

In particular, when \aleph_{δ} is a singular strong limit cardinal, then $2^{\aleph_{\delta}} = \beth(\aleph_{\delta}) < \aleph_{(2^{|\delta|})^+}$.

Corollary. In general, for all limit ordinal δ :

$$\beth(\aleph_{\delta}) \le \aleph_{\delta}^{|\delta|} < \max\left\{\aleph_{|\delta|^{++++}}, (2^{|\delta|})^{+}\right\}$$

A remarkable consequence is the stunning estimate

 $2^{\aleph_0} < \aleph_{\omega} \implies \aleph_{\omega}^{\aleph_0} < \aleph_{\omega_4}$

2. Small large cardinals

The cardinal κ is (strongly) inaccessible if

 κ is regular, i.e. $cof \kappa = \kappa$, and

 κ is strong limit, i.e. $\mu < \kappa \Longrightarrow 2^{\mu} < \kappa$.

Hence κ cannot be a successor, so it is a regular limit cardinal (the latter are now called weakly inaccessible cardinals)

According to the definition, ω is an inaccessible cardinal. On the other hand, if $\kappa > \omega$, then the corresponding segment V_{κ} of the cumulative hierarchy is a transitive model of ZFC, so the existence, and even the consistency, of uncountable inaccessible cardinals cannot be proved in ZFC.

2.1. **trees.** A tree (T, <) is a partially ordered set s.t. the predecessors of any $t \in T$ are well ordered by <. The α th level T_{α} of T is the set of all $t \in T$ s.t. the order type of the predecessors of t is α . The height h(T) of T is the least α s.t. $T_{\alpha} = \emptyset$. A subset of T totally ordered by < in order-type (length) α is an α -path. A branch of T is a h(T)-path, *i.e.* one of maximal length. A κ -tree is tree of height κ whose levels have size less than κ . A cardinal κ has the tree property if every κ -tree has a κ -branch. A classical "infinitary" property of ω is the tree property.

Theorem. (König's Lemma) Any infinite tree whose levels are all finite has an infinite branch.

2.2. **Partition relations.** Denote by $[X]^n = \{Y \subseteq X \mid |Y| = n\}$, *i.e.* the set of all (unordered) *n*-tuples of elements of X.

The partition relation $\kappa \to (\lambda)_s^n$ means that any partition (coloring) of $[\kappa]^n$ into s parts (colors) admits a homogeneous set, *i.e.* a subset $H \subseteq \kappa$ s.t. $[H]^n$ is monochromatic (all *n*-tuples from H belong to the same part of the partition). Another classical "infinitary" property of ω is the partition property.

Theorem. (Ramsey) $\omega \to (\omega)_s^n$ for all $n, s < \omega$.

Clearly

 $\nu \geq \kappa, \ \mu \leq \lambda, \ m \leq n, \ t \leq s \implies (\kappa \to (\lambda)_s^n \implies \nu \to (\mu)_t^m)$ On the other hand $\kappa \not\to (\omega)_{\kappa}^2$, and $\kappa \not\to (\omega)_2^{\omega}$. Moreover $2^{\kappa} \not\to (\omega)_{\kappa}^2$, and $2^{\kappa} \not\to (\kappa^+)_2^2$. Hence $\kappa \to (\kappa)_2^2 \implies \kappa \ strongly \ inaccessible$.

2.3. Weakly compact cardinals and languages. Call weakly compact a cardinal κ s.t. $\kappa \to (\kappa)_2^2$. Weakly compact cardinals refer to a property of the infinitary languages $\mathcal{L}_{\kappa,\lambda}$ with κ variables, where conjunctions and disjunctions of length less than κ , and universal and existential quantifications on blocks of less than λ variables are permitted.

The language \mathcal{L} is strongly κ -compact when any set Σ of sentences of \mathcal{L} has a model if and only if any subset of Σ of size less than κ has a model. The language \mathcal{L} is weakly κ -compact if any set Σ of sentences of \mathcal{L} of size $\leq \kappa$ has a model if and only if any subset of Σ of size less then κ has a model.

Ramsey's theorem implies the compactness theorem of first-order classical logic:

Theorem. $\mathcal{L}_{\omega,\omega}$ is strongly ω -compact.

2.4. Weak compactness v/s tree property. The following implications are straightforward:

- (1) If $\mathcal{L}_{\kappa\omega}$ is weakly compact, then κ is weakly inaccessible.
- (2) If κ has the tree property, then κ is regular.
- (3) If $\kappa = \lambda^+$ has the tree property, then $\lambda^{<\lambda} \ge \kappa$.

Theorem.

- (1) If $\kappa \to (\kappa)_2^2$ then κ has the tree property.
- (2) If κ is inaccessible and has the tree property, then $\kappa \to (\kappa)^n_{\lambda}$ for all $n \in \omega$ and for all $\lambda < \kappa$.
- (3) If κ is inaccessible and $\mathcal{L}_{\kappa,\omega}$ is weakly κ -compact, then κ has the tree property.
- (4) If κ is inaccessible and has the tree property, then $\mathcal{L}_{\kappa,\kappa}$ is weakly compact.

Hence, assuming GCH, $\mathcal{L}_{\kappa\omega}$ is weakly compact if and only if κ is weakly compact, and only successors of singular cardinals might have the tree property without being weakly compact. (and this would require very large cardinals, implying $V \neq L$).

A sufficient condition for obtaining the equivalence between tree property and weak compactness, without assuming GCH, is the combinatorial principle \Box_{κ} for all κ .

2.5. Partition properties with ordinal goals. Consider the finer partition relation $\kappa \to (\alpha)^n_{\lambda}$, with α a (non-necessarily initial) ordinal, meaning that for all $\varphi : [\kappa]^n \to \lambda$ there is a homogeneous H of order type α .

Lemma. (Stepping up lemma)

For $1 \le n < \omega$ and $\lambda \le 2^{<\kappa} = (2^{<\kappa})^{<\kappa}$ (in particular $\lambda < \operatorname{cof} \kappa$) $\kappa \to (\alpha)^n_{\lambda} \implies (2^{<\kappa})^+ \to (\alpha+1)^{n+1}_{\lambda}$

Recall that the \square -hierarchy is defined inductively as $\beth_0(\kappa) = \kappa, \ \beth_{\alpha+1}(\kappa) = 2^{\beth_\alpha(\kappa)}, \ \beth_\lambda(\kappa) = \sup_{\alpha < \lambda} \beth_\alpha(\kappa) \ (limit \ \lambda)$

Theorem. (Erdös-Rado partition theorem) $\beth_n(2^{<\kappa})^+ \to (\kappa + n + 1)^n_\lambda \text{ for all } \lambda < \operatorname{cof} \kappa.$ $\beth_n(\kappa)^+ \to (\kappa^+ + n)_{\kappa}^n \text{ for all } \kappa.$ Hence

So, in particular, $2^{\kappa} \not\rightarrow (\kappa^+)_2^2$, but $(2^{\kappa})^+ \rightarrow (\kappa^+)_{\kappa}^2$.

Partition relations with infinite exponent being impossible, consider the partition relation $\kappa \to (\alpha)_{\lambda}^{<\omega}$, meaning that for any λ -colouring $\varphi: [\kappa]^{<\omega} \to \lambda$ of all finite parts of κ , there exists a set $H \subseteq \kappa$ of order type α homogeneous for φ , *i.e.* such that each set $[H]^n$ is (separately) monochromatic for $\varphi_{\mid [\kappa]^n}$, $2 \leq n < \omega$.

The α th Erdös cardinal $\kappa(\alpha)$ is the (necessarily uncountable) cardi-

nal $\kappa(\alpha) = \min \{ \kappa \mid \kappa \to (\alpha)_2^{<\omega} \}$. *Caveat* $\kappa \to (\alpha)_{\lambda}^{<\omega} \Longrightarrow \forall n < \omega \ (\kappa \to (\alpha)_{\lambda}^n)$, but the implication cannot be reversed, e.g. $\omega \not\to (\omega)_2^{<\omega}$.

Theorem.

- (1) $\kappa(\alpha)$ is regular, and $\kappa(\alpha) \not\rightarrow (\alpha+1)_2^{<\omega}$;
- (2) for limit α , $\kappa(\alpha)$ is inaccessible and $\forall \overline{\lambda} < \kappa(\alpha) \ (\kappa(\alpha) \to (\alpha)^{<\omega}_{\lambda});$
- (3) $\kappa(\alpha + n + 1) = \beth_n(\kappa(\alpha))^+$ for all $n < \omega$.

Let M be a model for the language \mathcal{L} . A set $\mathcal{I} \subseteq \kappa$ is a set of indiscernibles for the model $M \supseteq \kappa$ of \mathcal{L} if for any formula ϕ of \mathcal{L} with x_1, \ldots, x_n free, and any increasing sequences $\alpha_1, \ldots, \alpha_n$ and β_1, \ldots, β_n from *I*:

$$M \models \phi[\alpha_1, \dots, \alpha_n] \iff M \models \phi[\beta_1, \dots, \beta_n]$$

Remark. Let $\varphi : [\kappa]^{<\omega} \to \{0,1\}$, and put $\varphi_n = \varphi_{|[\kappa]^n}$. Then any set of indiscernibiles for the model $M = (V_{\kappa}; <, \{\varphi_n \mid n < \omega\})$ is homogeneous for φ .

Lemma. If $\kappa \to (\alpha)_{2|\mathcal{L}|}^{<\omega}$ there exists a set of indiscernibles for \mathcal{L} of order type α .

 $\kappa(\alpha) \to (\alpha)^{<\omega}$ for all $\lambda < \kappa(\alpha)$. Corollary.

The strongest partition property leads to call a cardinal κ Ramsey if $\kappa \to (\kappa)_2^{<\omega}$ or equivalently if $\kappa \to (\kappa)_{<\kappa}^{<\omega}$

3. Large large cardinals

3.1. Ideals, filters, and measures. A nonempty family of subsets $\mathcal{I} \subseteq \mathcal{P}(I)$ is an ideal on I if

- (1) $B \in \mathcal{I}, A \subseteq B \implies \mathcal{A} \in \mathcal{I};$
- (2) $A, B \in \mathcal{I} \implies A \cup B \in \mathcal{I};$ (3) $I \notin \mathcal{I}$.

The ideal \mathcal{I} is κ -complete if it is closed under unions of size less than $\kappa, i.e. \{A_{\alpha} \mid \alpha < \lambda < \kappa\} \subseteq \mathcal{I} \implies \bigcup_{\alpha < \lambda} A_{\alpha} \in \mathcal{I}.$

The ideal \mathcal{I} is a κ -saturated if every disjoint family of sets not in \mathcal{I} has size less then κ , *i.e.* $\mathcal{A} \cap \mathcal{I} = \emptyset$, $\forall A, B \in \mathcal{A} (A \cap B = \emptyset) \Longrightarrow |\mathcal{A}| < \kappa$.

The ideal \mathcal{I} is prime if it is maximal, or equivalently $A \in \mathcal{I} \Leftrightarrow$ $I \setminus A \notin \mathcal{I}.$

A nonempty family of subsets $\mathcal{F} \subseteq \mathcal{P}(I)$ is a filter on I if

- (1) $A \in \mathcal{F}, A \subseteq B \implies B \in \mathcal{F};$ (2) $A, B \in \mathcal{F} \implies A \cap B \in \mathcal{F}$:
- (3) $\emptyset \notin \mathcal{F}$.

The filter \mathcal{F} is κ -complete if it is closed under intersections of size

 $\lambda < \kappa, i.e. \{A_{\alpha} \mid \alpha < \lambda < \kappa\} \subseteq \mathcal{F} \implies \bigcap_{\alpha < \lambda} A_{\alpha} \in \mathcal{F}.$ The filter \mathcal{F} is a principal if there exists $E \subseteq I$ s.t. $A \in \mathcal{F} \Leftrightarrow E \subseteq A$. A filter \mathcal{U} is an ultrafilter if it is maximal, equivalently $A \in \mathcal{U} \Leftrightarrow I \setminus A \notin \mathcal{U}$.

A principal filter \mathcal{F}_E is ultra if and only if $E = \{i\}$ is a singleton. $\mu: \mathcal{P}(X) \to \mathbb{R}$ is a (nontrivial, σ -additive) measure on X if

- (1) $\mu(\{x\}) = 0$ for all $x \in X$;
- (2) $B \subseteq A \implies \mu(B) \le \mu(A);$
- (3) $A_n \cap A_m = \emptyset$ for all $m \neq n \implies \mu(\bigcup_{n < \omega} A_n) = \sum_{n < \omega} \mu(A_n)$.

 μ is κ -additive if $\mu(A_{\alpha}) = 0$ for $\alpha < \lambda < \kappa \Longrightarrow \mu(\bigcup_{\alpha < \lambda} A_{\alpha}) = 0.$

 μ is two-valued if $\mu: \mathcal{P}(X) \to \{0, 1\}.$

An atom of μ is $A \subseteq X$ s.t. $B \subseteq A$, $\mu(B) \neq \mu(A) \Longrightarrow \mu(B) = 0$. μ is atomless if there are no atoms.

Theorem. (Ulam 1930ca.) If μ is an atomless measure on X, then X is the union of $< 2^{\aleph_0}$ zero-sets, and $2^{\aleph_0} >$ the least weakly inaccessible cardinal. If μ has an atom, then $|X| \geq$ the least (strongly) inaccessible cardinal.

For $n < \omega$ any disjoint family of sets of measure $\geq \frac{1}{n}$ has size $\leq n$ (if μ is two-valued). Hence, if μ is κ -additive and $\{A_{\alpha} \mid \alpha < \lambda < \kappa\}$ is a family of pairwise disjoint sets, then $\mu(\bigcup_{\alpha < \lambda} A_{\alpha}) = \sup_{x \in [\lambda] \le \omega} \sum_{\alpha \in x} \mu(A_{\alpha}),$ so the measure is properly " κ -additive".

The zero-ideal of μ is $\mathcal{I}_{\mu} = \{A \subseteq X \mid \mu(A) = 0\}$, which is is κ -complete iff μ is κ -additive, and is prime iff μ is two-valued.

Similarly, the set $\mathcal{F}_{\mu} = \{A \subseteq X \mid \mu(A) = 1\}$ is a filter, which is is κ -complete iff μ is κ -additive, and is an ultrafilter iff μ is two-valued.

The family of all non-zero sets $\mathcal{I}^+_{\mu} = \{A \subseteq X \mid \mu(A) > 0\}$ (the complement of \mathcal{I}_{μ}) is a filter (actually an ultrafilter) iff $\mathcal{I}^+_{\mu} = \mathcal{F}_{\mu}$.

Lemma. Let κ be the least cardinal carrying a measure μ : then μ is κ -additive if and only if the corresponding ideal \mathcal{I}_{μ} is κ -complete. Moreover, μ is two valued if and only if \mathcal{I}^+_{μ} is a κ -complete ultrafilter \mathcal{U}_{μ} .

Lemma. Let μ be an atomless measure on κ : then there is a partition of κ in no more than 2^{\aleph_0} null sets. Hence μ induces a measure on some $\lambda \leq 2^{\aleph_0}$, and so also on \mathbb{R} .

3.2. Measurable cardinals. Call κ measurable if there is a two valued κ -additive measure on κ . Call κ real-valued measurable if there is any κ -additive measure on κ .

Theorem. If κ is measurable, then κ is inaccessible. If κ is real-valued measurable, then κ is weakly inaccessible.

Let \mathcal{U} be an ultrafilter on I and let $\{M_i \mid i \in I\}$ be indexed by I. Then the ultraproduct $\prod_{i \in I} M_i / \mathcal{U}$ is the quotient of the Cartesian product $\prod_{i \in I} M_i$ modulo the equivalence $\equiv_{\mathcal{U}}$ defined by

 $\langle x_i \mid i \in I \rangle \equiv_{\mathcal{U}} \langle y_i \mid i \in I \rangle \iff \{i \in I \mid x_i = y_i\} \in \mathcal{U}.$ Similarly, membership mod \mathcal{U} is defined on $\prod_{i \in I} M_i / \mathcal{U}$ by

 $\langle x_i \mid i \in I \rangle \in_{\mathcal{U}} \langle y_i \mid i \in I \rangle \iff \{i \in I \mid x_i \in y_i\} \in \mathcal{U}.$

Then, for any set-theoretic formula ϕ , one has

Theorem. (Los) For all $f_1, \ldots, f_n \in \prod_{i \in I} M_i$ $\prod_{i \in I} M_i / \mathcal{U} \models \phi[f_1, \ldots, f_n] \iff \{i \in I \mid M_i \models \phi[f_1(i), \ldots, f_n(i)]\} \in \mathcal{U}$.

When all sets M_i are equal to the same set M, the ultraproduct $\prod_{i \in I} M_i/\mathcal{U}$ is called the ultrapower of M modulo \mathcal{U} and denoted by $M_{\mathcal{U}}^I$. The diagonal embedding $d_{\mathcal{U}} : M \to M_{\mathcal{U}}^I$ maps any $x \in M$ to the equivalence class of the constant function $c_x : i \mapsto x$.

Then Los' theorem implies, for any set-theoretic formula ϕ ,

Corollary. For all $x_1, \ldots, x_n \in M$ $M^I_{\mathcal{U}} \models \phi[d_{\mathcal{U}}(x_1), \ldots, d_{\mathcal{U}}(x_n)] \Longleftrightarrow M \models \phi[x_1, \ldots, x_n]$.

When M is a proper class, the equivalence classes may be proper, hence uncollectible, but one can use Scott's trick and extract from each class the elements of least rank, which are a set characterizing the whole equivalence class. Then the ultrapower $M_{\mathcal{U}}^{I}$ remains a proper class, but its elements are sets.

3.3. Mostowski's collapse. If the relation $\in_{\mathcal{U}}$ is extensional and well-founded, one has the Mostowski collapse, *i.e.* the unique isomorphism $\pi: M^{I}_{\mathcal{U}} \to N$ onto a transitive class.

Lemma. When M is transitive, the relation $\in_{\mathcal{U}}$ is extensional, and it is wellfounded iff the ultrafilter \mathcal{U} is \aleph_1 -complete.

Then the composition $j_{\mathcal{U}} = \pi \circ d_{\mathcal{U}} : M \to N$ is an elementary embedding s.t. $M \models \phi[x_1, \ldots, x_n] \iff N \models \phi[j_{\mathcal{U}}(x_1), \ldots, j_{\mathcal{U}}(x_n)].$ In particular $\forall x, y \in M \ (j_{\mathcal{U}}(x) \subseteq j_{\mathcal{U}}(y) \iff x \subseteq y).$

If κ is measurable, the ultrafilter \mathcal{U}_{μ} is κ -complete, so there exists a transitive class M and a unique nontrivial elementary embedding $\pi \circ d_{\mathcal{U}_{\mu}} = j_{\mu} : V \to M.$

Any $f : \kappa \to \kappa$ not \mathcal{U}_{μ} -equivalent to a constant c_{α} , with $\alpha < \kappa$, is mapped by π to an ordinal $\pi(f) < \pi(c_{\kappa}) = j_{\mu}(\kappa)$. On the other hand, by induction on α , $j_{\mu}(\alpha) = \pi(c_{\alpha}) = \alpha$ for all $\alpha < \kappa$. Hence $\kappa < j_{\mu}(\kappa)$. (Actually $j_{\mu}(x) = x$ for all $x \in V_{\kappa}$, and so $j_{\mu}(V_{\kappa}) = V_{\kappa}$.)

More generally, any nontrivial elementary embedding $j: V \to M$ onto a transitive class M has a critical point $\kappa = \operatorname{crit} j$, the least ordinal moved by j, s.t. $j_{\mu}(\kappa) > \kappa$, while $j_{\mu}(\alpha) = \alpha$ for all $\alpha < \kappa$.

3.4. Normal ultrafilters. A nonprincipal κ -complete ultrafilter \mathcal{U} on κ is normal if it is closed under diagonal intersections, *i.e.*

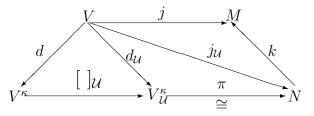
 $\forall \alpha < \kappa. U_{\alpha} \in \mathcal{U} \Longrightarrow \Delta_{\alpha < \kappa} U_{\alpha} = \{\beta < \kappa \mid \beta \in \bigcap_{\alpha < \beta} U_{\beta}\} \in \mathcal{U}, \text{ or eqivalently any regressive function } f \in \kappa^{\kappa} \text{ is almost constant mod } \mathcal{U}, i.e. \\ (\{\alpha < \kappa \mid f(\alpha) < \alpha\} \in \mathcal{U} \Longrightarrow \exists \beta. \{\alpha < \kappa \mid f(\alpha) = \beta\} \in \mathcal{U}).$

Lemma.

Let [h] be the least nonconstant ordinal function in V^{κ}/\mathcal{U} (so that $\pi[h] = \kappa$)). Then both conditions

(i) $[id_{\kappa}] = [h]$, and (ii) $\forall U \subseteq \kappa \ (U \in \mathcal{U} \iff \kappa \in j_{\mathcal{U}}(U))$ are equivalent to normality.

Theorem. Let $j: V \to M$ be an elementary embedding with $crit(j) = \kappa$. Then the set $\mathcal{U} = \{U \subseteq \kappa \mid \kappa \in j(U)\}$ is a normal κ -complete ultrafilter on κ , and $[id_{\kappa}]_{\mathcal{U}}$ is the least class of non-constant functions in $\kappa^{\kappa}/\mathcal{U}$. Let N be the Mostowski collapse of the ultrapower $V_{\mathcal{U}}^{\kappa}$: then the map $k: N \to M$ such that $k: \pi([f]_{\mathcal{U}}) \mapsto (j(f))(\kappa)$ is an elementary embedding that makes the following diagram commute



(where d is the "diagonal" map and []_{\mathcal{U}} is the projection onto the quotient mod \mathcal{U})

Moreover one has

- (1) $j_{\mathcal{U}}(x) = x$ for all $x \in V_{\kappa}$, and $j_{\mathcal{U}}(X) \cap V_{\kappa} = X$ for all $X \subset V_{\kappa}$;
- (2) $\mathcal{U} \notin N$, and $N^{\kappa} \subseteq N$, but $N^{\kappa^+} \not\subseteq N$;
- (3) $2^{\kappa} \leq (2^{\kappa})^N < j_{\mathcal{U}}(\kappa) < (2^{\kappa})^+;$
- (4) for λ limit ordinal, $\operatorname{cof} \lambda = \kappa \Longrightarrow j_{\mathcal{U}}(\lambda) > \bigcup_{\alpha < \lambda} j_{\mathcal{U}}(\alpha)$, and $\operatorname{cof} \lambda \neq \kappa \Longrightarrow j_{\mathcal{U}}(\lambda) = \bigcup_{\alpha < \lambda} j_{\mathcal{U}}(\alpha)$.

Corollary. Let μ be a normal measure on κ : then any partition of $[\kappa]^{<\omega}$ into less than κ parts has a homogeneous set of measure 1, hence every measurable cardinal is Ramsey. Actually, almost all ordinals less than κ are Ramsey (and a fortiori weakly compact).

3.5. Compact cardinals. Let κ be regular and $\lambda \geq \kappa$. A κ -complete filter \mathcal{F} on $[\lambda]^{<\kappa}$ is fine if, for all $\alpha < \lambda$, the cone $C(\alpha) = \{x \in [\lambda]^{<\kappa} \mid \alpha \in x\} \in \mathcal{F}$.

A fine ultrafilter \mathcal{U} on $[\lambda]^{<\kappa}$ is is normal if any choice function $f : [\lambda]^{<\kappa} \to \lambda$ is constant on some $U \in \mathcal{U}$. or equivalently \mathcal{U} is closed under diagonal intersections, *i.e.*

 $\forall \alpha < \kappa. U_{\alpha} \in \mathcal{U} \implies \Delta_{\alpha < \kappa} U_{\alpha} = \{ x \in [\lambda]^{<\kappa} \mid x \in \bigcap_{\alpha \in x} U_{\alpha} \} \in \mathcal{U}.$

A cardinal κ is λ -compact if there is a fine ultrafilter on $[\lambda]^{<\kappa}$, and κ is λ -supercompact if there is a normal ultrafilter on $[\lambda]^{<\kappa}$; then κ is [super]compact if it is λ -[super]compact for all $\lambda \geq \kappa$.

Any measurable cardinal κ is κ -supercompact. (if \mathcal{U} is a normal ultrafilter on κ , then $\{X \subseteq [\kappa]^{<\kappa} \mid X \cap \kappa \in \mathcal{U}\}$ is normal)

CAVEAT: ω is compact, but not even ω -supercompact.

Clearly any compact cardinal is measurable, and any supercompact cardinal is compact, but the reverse implications are neither provable nor refutable. Actually, there is a model where there is exactly one measurable cardinal, which is also compact, and there is another one where there is exactly one compact cardinal, which is also supercompact.

Theorem. The following properties are equivalent for regular κ :

- (1) every κ -complete filter on any set X of size $\geq \kappa$ is contained in some κ -complete ultrafilter on X;
- (2) κ is (strongly) compact;
- (3) the compactness theorem holds for the language $\mathcal{L}_{\kappa\omega}$ (or equivalently for $\mathcal{L}_{\kappa\kappa}$).

Call (κ, λ) -regular a κ -complete nonprincipal ultrafilter \mathcal{U} on λ if there is a family $\{X_{\alpha} \in [\lambda]^{<\kappa} \mid \alpha < \lambda\}$ s.t., for all $\beta < \lambda$, $\{\alpha < \lambda \mid \beta \in X_{\alpha}\} \in \mathcal{U}$.

Lemma. If $\lambda > \kappa$ are regular and there is a fine ultrafilter on $I = [\lambda]^{<\kappa}$, then there is a (κ, λ) -regular ultrafilter on λ .

Theorem. (Solovay) The equality $\lambda^{<\kappa} = \lambda$ holds for all regular λ above the least compact cardinal κ . It follows that the singular cardinal hypothesis SCH holds above the least compact cardinal.

3.6. λ -supercompact and η -extendible cardinals.

Lemma. Let $\lambda \geq \kappa$ be regular, let \mathcal{U} be a normal ultrafilter on $I = [\lambda]^{<\kappa}$, and let $j_{\mathcal{U}} = j : V \to M$ be the elementary embedding onto the Mostowski collapse of the ultrapower $V_{\mathcal{U}}^I$.

Then $G = \pi[id_I] = \{j(\alpha) \mid \alpha < \lambda\}$ and $\mathcal{U} = \{U \subseteq I \mid G \in j(U)\}$. Moreover $crit(j) = \kappa = j(i \mapsto i \cap \kappa) < \lambda = j(i \mapsto o.-t.i), and M^{\lambda} \subseteq M$.

Theorem. Let $j: V \to M$ be an elementary embedding with $crit(j) = \kappa$. Then there is $\lambda \geq \kappa$ s.t. $M^{\lambda} \subseteq N$ if and only if κ is λ -supercompact.

Corollary. Let κ be 2^{κ} -supercompact. Then κ is the κ th measurable cardinal. Actually there is a normal measure on κ s.t. almost all ordinals less than κ are measurable.

A cardinal κ is η -extendible if $\exists \beta \exists j : V_{\kappa+\eta} \to V_{\beta}$ with $crit(j) = \kappa$, $\eta < j(\kappa)$, and κ is extendible if it is η -extendible for all η , or equivalently $\forall \alpha > \kappa \exists \beta \exists j : V_{\alpha} \to V_{\beta}$ with $crit(j) = \kappa$.

Clearly $\kappa \eta$ -extendible $\implies \kappa \delta$ -extendible for all $\delta < \eta$.

Lemma. Assume $\kappa \lambda$ -supercompact, and $\nu < \kappa \delta$ -supercompact for all $\delta < \kappa$: then ν is λ -supercompact.

Theorem.

- (1) If κ is $\beth(\kappa + \eta)$ -supercompact and $\eta < \kappa$, then almost all $\alpha < \kappa$ are η -extendible.
- (2) If κ is η -extendible and $\eta \geq \lambda + 2$, then κ is $\exists (\kappa + \lambda)$ -supercompact.
- (3) If κ is 1-extendible and supercompact, then almost all $\alpha < \kappa$ are supercompact.
- (4) If κ is extendible, then almost all $\alpha < \kappa$ are supercompact.

3.7. Largest (not proved inconsistent) cardinals. Let j elementary, $\kappa = crit(j), j^{n+1}(\kappa) = j(j^n(\kappa), j^{\omega}(\kappa) = \sup j^n(\kappa).$

- (1) κ is superhuge if $\forall \eta \exists j : V \to M$ with $\eta < j(\kappa), M^{j(\kappa)} \subseteq M$;
- (2) κ is *n*-huge if $\exists j: V \to M$ with $M^{j^n(\kappa)} \subseteq M$;

- (3) κ is ω -huge if κ is *n*-huge for all $n < \omega$.
- (4) κ is I1 or I3 if $\exists \lambda \exists j : V_{\lambda} \to V_{\lambda}$ (and then necessarily either $\lambda = j^{\omega}(\kappa) + 1$ or $\lambda = j^{\omega}(\kappa)$, resp.).

Theorem.

- (1) κ is 1-huge \iff there is a normal ultrafilter on $[\kappa]^{\omega}$.
 - κ least (1-)huge cardinal $\Rightarrow \kappa <$ least supercompact;
 - κ -superhuge \Rightarrow almost all $\alpha < \kappa$ are extendible;
 - κ 2-huge \Rightarrow almost all $\alpha < \kappa$ are superhuge;
 - κ (n+1)-huge \Rightarrow almost all $\alpha < \kappa$ are n-huge.
- (2) If κ is I1, then almost all $\alpha < \kappa$ are I3, and if κ is I3, then almost all $\alpha < \kappa$ are ω -huge.

3.8. **Reinhardt's cardinals.** The ultimate closure property of a large cardinal should be the existence of $j : V \to V$ with $\kappa = crit(j)$: call such a κ Reinhardt.

More demanding, call κ Berkeley if for all transitive M with $\kappa \in M$ there is $j: M \to M$ with $crit(j) < \kappa$.

Every Reinhardt cardinal is Berkeley, and Berkeley cardinals are above ω -huge cardinals. It is an open problem whether Reinhardt's cardinals are relatively consistent with ZF+DC.

However their existence contradicts the axiom of choice.

Lemma. (Erdös-Hajnal) If $2^{\kappa} = \kappa^{\aleph_0}$, then there is $f : [\kappa]^{\omega} \to \kappa$ s.t., for any $X \in [\kappa]^{\kappa}$, $\kappa = \{f(x) \mid x \in [X]^{\omega}\}$.

Theorem. (Kunen) Let $j : V \to M$ be an elementary embedding with $crit(j) = \kappa$, and let $\lambda = \sup_{n < \omega} j^n(\kappa)$.

Then $G = \{j(\alpha) \mid \alpha < \lambda\} \notin M$, hence $M^{\lambda} \not\subseteq M$.

Corollary. There is no nontrivial elementary $j: V_{\lambda+2} \to V_{\lambda+2}$.

4. The axiom of determinacy AD

In the game G_A , for $A \subseteq \omega^{\omega}$, two players play alternatively natural numbes: I wins if the resulting sequence belongs to A, otherwise IIwins. A strategy for I is a "rule" for choosing moves $\sigma : \bigcup_{n < \omega} \omega^{2n} \to \omega$; similarly, a strategy for II is $\tau : \bigcup_{n < \omega} \omega^{2n+1} \to \omega$. G_A is determined if one player has a winning strategy. The axiom AD^P states that for each $A \in P$ one player has a winning strategy. AD is simply $AD^{\mathcal{P}(\omega^{\omega})}$.

Theorem.

- (1) $AC \Longrightarrow \exists A \subseteq \omega^{\omega} \ s.t. \ G_A \ is \ not \ determined.$
- (2) $AD \Longrightarrow [\mathbb{R}]^{\omega}$ has a choice function.
- (3) $AD \implies$ every set of reals is Lebesgue measurable, has the Baire property, and, if uncountable, has a perfect subset.

4.1. Large cardinals and partial determinacy. Let \mathcal{B}, \mathcal{A} , and \mathcal{P} be the σ -algebras of the Borel, analytic, and projective sets, resp.

Theorem.

- (1) $AD^{\mathcal{B}}$ holds in ZFC.
- (2) $\exists \kappa \ measurable \implies AD^{\mathcal{A}}.$
- (3) $\exists \kappa \ supercompact \implies AD^{L(\mathbb{R})} \implies AD^{\mathcal{P}}.$

((2) is Thm.105 of Jech, for (3) ω Woodin cardinals with a measurable above suffice; complete proof in Kanamori VI.32)

4.2. Large cardinals under AD. Since there is a set of reals of size \aleph_1 without perfect subsets, one has $AD \implies \aleph_1 \nleq 2_0^{\aleph}$.

Considering instead the surjective ordering of cardinalities, let $\Theta = \sup\{\alpha \mid \exists f : \mathbb{R} \to \alpha \text{ onto}\}$ (so $\Theta = (2_0^{\aleph})^+$ in ZFC).

Theorem (For complete proofs see Kanamori Ch. VI. 28.).

(1) $AD \Longrightarrow \Theta = \aleph_{\Theta} and AD + DC \Longrightarrow cof \Theta > \omega$

- (2) $AD \Longrightarrow \aleph_1, \aleph_2, \aleph_{\omega+1}, \aleph_{\omega+2}$ are measurable, $\forall n \operatorname{cof} \aleph_n = \aleph_2$.
- (3) $AD + V = L(\mathbb{R}) \Longrightarrow DC + cof \Theta = \Theta = sup\{\alpha \mid \alpha \text{ measurable}\}$

CAVEAT DC holds in $L(\mathbb{R})$, hence DC is relatively consistent with AD, but it is not implied by AD.

4.3. Bibliography.

- T. JECH Set theory, Academic Press 1978: Ch. I 6-8; Ch. V 27-29,32; Ch. VI 33-34.
- (2) M. HOLZ, K. STEFFENS AND E. WEITZ Introduction to Cardinal Arithmetic, Birkhäuser 1999: 1.6-7, 6.2, 7.2, 8.1, 9.1-2
- (3) A. KANAMORI The Higher Infinite, Springer 2009
- (4) F.R. DRAKE Set Theory: An Introduction to Large Cardinals, North Holland 1974