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A stochastic differential equation (SDE) is a differential equation in which a
random noise term appears. The prototype of a stochastic differential equation is
given by

dX = b(X)dt+ σ(X)dW

where b : Rd → Rd and σ : Rd×m → Rd are the drift and diffusion coefficient, re-
spectively. Here, W is an m-dimensional Brownian motion, and X is the solution,
a stochastic process taking values in Rd. Stochastic differential equations are stud-
ied both for their distinctive properties, which set them apart from deterministic
equations, and for their applications in mathematics, physics, finance, and other
fields.

In this course, we plan to show some distinctive properties and tools of SDEs,
as well as some examples and applications. In the following, we give some possible
topics of the course, the precise list of topics can change according also to time
restriction and to the students’ preferences.

1. Well-posedness, chain rule, Feynman-Kac formulae: We will recall the classi-
cal existence and uniqueness result for solutions to SDEs and the stochastic
chain rule, namely Itô formula. We will also recall the link between the SDEs
and the second-order linear PDEs, namely the Feynman-Kac formulae.

2. Uniqueness in law and Girsanov theorem: Beside the classical pathwise
uniqueness concept (two solutions X and Y satisfies X = Y P -a.s.), there
is another concept of uniqueness, namely uniqueness in law (Law(X) =
Law(Y )). Remarkably, uniqueness in law is strictly weaker than pathwise
uniqueness. Another properties of the law of the solution to an SDE is Gir-
sanov theorem: in the simple setting of additive noise (i.e. σ = constant ̸= 0),
under suitable regularity assumptions, the law of the solution is absolutely
continuous with respect to the Wiener measure, with an explicit density.

3. One-dimensional SDEs and Feller test of explosion: Given a one-dimensional
(d = 1) SDE

dXt =
1

Xt

1Xt ̸=0dt+ c dW
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with X0 > 0, does X ever touch zero with positive probability? without
noise (i.e. c = 0) no, but with noise it can happen:

Theorem 0.1 (Informal). For every c >
√
2, with positive probability there

exists a (stopping) time τ with Xτ = 0.

More generally, using suitable tools for one-dimensional SDEs, we can char-
acterize the behaviour of the solution near the singular points and at infinity.

4. Long-time behaviour and invariant distributions: An invariant distribution
is a probability measure µ on Rd such that

Law(X0) = µ ⇒ Law(Xt) = µ ∀t ≥ 0.

Invariant distributions are relevant at the physical level because they repre-
sent the state that the system reaches after a long time. For example, one
has

Theorem 0.2 (Informal). Consider the SDE

dXt = −∇V (Xt)dt+ dWt

for a smooth potential V with fast enough growth at infinity. Then there
exists an invariant distribution of the form

µ(dx) = Z−1e−2V (x)dx

with Z renormalization constant, and the law of Xt converges weakly, as
t → +∞, to µ.

5. Flow properties: Calling Xx
t the solution with initial condition x, we want

to study the regularity of Xx
t with respect to x. Due to technical reasons,

the study of the regularity is more difficult than in the deterministic case,
but it is relevant because it allows to solve some non trivial linear stochastic
partial differential equations (transport equation).

6. Mean-field interacting article systems and McKean-Vlasov SDEs: Consider a
system of N particles, where each particle is subject to an independent white
noise and the particles interact through their empirical measure: precisely,
consider

dX i,N
t =

1

N

N∑
j=1

K(X i,N
t −Xj,N

t )dt+ dW i
t , i = 1, . . . N,
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where X i,N
t ∈ Rd represents the position of the i-th particle, W i are inde-

pendent Brownian motions and K is an interaction kernel. Such systems
appear in (simplified) models in fluid dynamics (Euler equations), chemo-
taxis (Keller-Segel equations), neural networks (in the limit of infinite width
or infinite depth) and other examples. What is the behaviour of the system
for N large? In the limit N → ∞, the behaviour of a typical particle can
be described by one single SDE, where the drift depends on the law of the
solution itself (McKean-Vlasov SDEs), namely

dX̄ i
t = b(X̄ i

t ,Law(X̄
i
t))dt+ dW i

t ,

b(x, µ) =

∫
Rd

K(x− y)µ(dy).

Indeed, we have:

Theorem 0.3 (Informal). Assume that K is Lipschitz and bounded. For
every i, we have

E[ sup
t∈[0,T ]

|X i,N
t − X̄ i

t |] → 0 as N → ∞.

7. Regularization by noise: An ordinary differential equation with non-smooth
drift, for example the following one

dXt = sign(Xt)
√

|Xt| dt, X0 = 0,

can have multiple solutions. Surprisingly, the addition of a simple additive
noise, i.e. +dW with W one-dimensional Brownian motion, restores unique-
ness, even at a pathwise level!

For those who attend the course regularly, the exam consists of one or two
seminars on assigned course topics to be held during class hours, and possibly
some questions on course topics.

For those who do not attend the course, the exam consists of a traditional oral
examination on the course topics.
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