Istituzioni di Analisi Numerica

Paola Boito e Beatrice Meini

AA 2023/24

Obiettivi

Acquisire competenze teoriche e computazionali in teoria dell'approssimazione di funzioni, polinomi ortogonali, integrazione approssimata, funzioni di matrici, risoluzione numerica di equazioni alle derivate parziali mediante metodi alle differenze finite.

Organizzazione del corso

Lezioni teoriche, esercizi e sperimentazione numerica in Matlab.

Contenuti del corso

Polinomi ortogonali

Ricordiamo la definizione di polinomi ortogonali.

Sia \mathcal{P} l'insieme dei polinomi a coefficienti reali. Sia $\omega(x):[a,b]\to\mathbb{R}\cup\{\infty\}$ tale che, per a< x< b, valga $\omega(x)\in\mathbb{R},\ \omega(x)>0$ ed esista finito $\int_a^b f(x)\omega(x)dx$ per ogni polinomio f(x). Definiamo il prodotto scalare su \mathcal{P} :

$$\langle f, g \rangle := \int_{a}^{b} f(x)g(x)\omega(x)dx.$$

Un insieme di polinomi $\{p_i(x)\}_{i=0,1...}$ tale che $\deg(p_i)=i$ e $\langle p_i,p_j\rangle=0$ se $i\neq j$ è detto insieme di polinomi ortogonali.

Un esempio sono i polinomi di Chebyshev di prima specie, che si ottengono con [a,b]=[-1,1] e $\omega(x)=\frac{1}{\sqrt{1-x^2}}$. Studieremo varie proprietà, utili dal punto di vista teorico e computazionale:

Studieremo varie proprietà, utili dal punto di vista teorico e computazionale: proprietà degli zeri, ricorrenze a tre termini, relazioni con matrici tridiagonali,...

Tali polinomi saranno un ingrediente importante degli argomenti successivi del corso.

Integrazione numerica

Data $f \in C([a,b])$, vogliamo approssimare $S[f] = \int_a^b f(x)dx$ con una formula del tipo $S_{n+1}[f] = \sum_{i=0}^n w_i f(x_i)$, dove $a \le x_0 < x_1 < \cdots < x_n \le b$ e w_i , $i = 0, \ldots, n$ sono pesi assegnati.

Verranno studiate formule interpolatorie basate sugli zeri di opportuni polinomi ortogonali (Formule di Clenshaw-Curtis e Gaussiane).

Approssimazione di funzioni continue

Approssimazione lineare

Fissato l'insieme di funzioni linearmente indipendenti $\{\varphi_0(x), \varphi_1(x), \ldots\}$, data $f \in C([a,b])$ e fissati una norma $\|\cdot\|$ e un intero n, vogliamo calcolare α_i^* , $i=0,1,\ldots,n$ tali che la funzione $g_n(x)=\sum_{i=0}^n \alpha_i^* \varphi_i(x)$ verifichi

$$||f(x) - g_n(x)|| = \min_{\alpha_0, \dots, \alpha_n} ||f(x) - \sum_{i=0}^n \alpha_i \varphi_i(x)||.$$

Verrà dimostrata l'esistenza della soluzione e verranno studiate sue proprietà, teoriche e computazionali. I casi particolari in cui $\varphi_j(x) = x^j$ e le norme sono la norma 2 e la norma ∞ saranno trattati in dettaglio.

Altre approssimazioni

Verranno studiate altre approssimazioni, di tipo polinomiale a tratti (ed esempio le funzioni splines) oppure razionale (ad esempio le approssimanti di Padé).

Funzioni di matrici

Una classica funzione di matrice è l'esponenziale, definito come $\exp(A) = \sum_{i=0}^{\infty} \frac{A^i}{i!}$, dove $A \in \mathbb{C}^{n \times n}$. Verrà introdotta una definizione generale di funzione di matrice f(A), definita a partire da una funzione $f: \mathbb{C} \to \mathbb{C}$, che soddisfa opportune proprietà di regolarità. Verranno studiate alcune proprietà teoriche e computazionali di funzioni di matrici.

Trattamento numerico di PDE

Metodo delle differenze finite. Problema di Poisson, equazione del calore, equazione delle onde. Analisi di stabilità e convergenza.