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1 Overview

Mathematical models are often designed to describe how real-world pro-
cesses evolve over time. In reality, however, these processes are constantly
affected by unpredictable factors. Since these effects cannot usually be de-
scribed exactly, it is natural to model them as random perturbations of de-
terministic systems.

The evolution of a deterministic dynamical system is obtained by re-
peatedly applying the same rule. By contrast, the evolution of a random
dynamical system (RDS) is obtained by applying rules that vary randomly
at each step. The behavior of the system is therefore the result of the inter-
play between the deterministic rules and randomness.

The purpose of this course is to study the long-term behavior of sys-
tems whose evolution is governed by randomly chosen transformations.
The main tools come from ergodic theory, with a special emphasis on a
functional-analytic approach based on transfer operators.

2 Course Description

The general setup is as follows. Let F be a collection of transformations
f+ X — X acting on a space X. A random map is a rule that randomly
selects one transformation from F at each step, according to a probability
distribution y on F.

Now consider an infinite sequence of random maps {¢1, ¢2, ¢3, ... }, all
chosen independently according to the same distribution p. At step n, the



state of the system is obtained by applying all the maps chosen so far:
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The map 5, itself is random. If ;1 always selects the same map f, the
system becomes deterministic and evolves just by iterating f: S, = f".

This framework covers many interesting situations. For example: if F
consists of a single map, one recovers a deterministic dynamical system;
if F is a set of linear operators, one obtains products of random matrices;
if 7 comes from stochastic flows, the framework can describe solutions of
stochastic differential equations.

The course is divided into two parts. The first part covers the foun-
dations of the theory. We begin with a review of essential concepts from
deterministic dynamical systems, including invariant measures and ergod-
icity. We then introduce the framework of random dynamical systems
(RDS), presenting their formulation via cocycles and skew-product repre-
sentations. Connections with Markov chains will be highlighted, as well as
the role of stationary measures in describing long-term statistical behavior.

The second part of the course focuses on applications, showing how
random dynamical systems appear in different areas of mathematics and
applications.

A key tool in this course is the transfer operator, which describes how
probability measures evolve under the dynamics and provides a rigorous
foundation for the ensemble approach of statistical physics. Under suit-
able assumptions, these operators exhibit strong functional-analytic prop-
erties, which allow one to derive quantitative results on stationary mea-
sures and their robustness under perturbations. From these properties, we
will deduce consequences with significant practical applications, such as:
linear response of observable averages and related control problems, statis-
tical estimates for the distribution of extreme events, and reliable numerical
methods for studying random dynamical systems.

3 Course Outline
The following is a tentative list of topics to be covered in the course:

1. Preliminaries on ergodic theory of deterministic maps: a) invariant
measure of a deterministic map, b) ergodic theorems, c) ergodicity

2. Random transformations



3. Stationary measures
4. Ergodic stationary measures

5. Spectral properties of random dynamical systems: Koopman and Trans-
fer operators

6. Spectral gap
7. Applications to random dynamical system with additive noise

8. Linear response and extreme events
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5 Assessment

For attending students, the assesment will consist of a 40-minute seminar
on a topic agreed upon by the student and the instructor followed by a 15-
minute examination on the general theory presented in the course. A list of
topics for the seminar will be provided by the instructor. For non-attending
students, the assessment will consist of a full oral examination on the entire
content of the course.



6 Prerequisites

Measure-theoretic probability, functional analysis, and basic ergodic the-
ory (or willingness to acquire them during the course; the initial lectures
provide a reviews the fundamental notions of ergodic theory).

7 Instructors

Stefano Galatolo, email: e-mail: stefano.galatolo@unipi.it
Web: http:/ /users.dma.unipi.it/galatolo/
Office: building Ex-Albergo, Room 26

Gianluigi Del Magno, email: gianluigi.delmagno@unipi.it
Office: building Ex-Albergo, Room 24



