Prova N.1 parte 1: risposte
Matematica e Statistica 2016
Viticoltura ed Enologia
19 gennaio 2017

10 11 12 13 14 15 16 17 18 D D C В Α С D С D В С Α В risposte: C

Ricordiamo che se Z ha distribuzione normale standard, si ha P(Z > 1.00) = 16%, P(Z > 1.28) = 10%, P(Z > 1.64) = 5%, P(Z > 2.00) = 2.3%, P(Z > 2.33) = 1%, P(Z > 2.58) = 0.5%, P(Z > 3.00) = 0.1%.

- 1. Una quantità x viene prima aumentata del 20% e poi il risultato viene diminuito del 20%. Si ottiene una quantità y che rispetto a x è
- (A) non si può dire (B) esattamente uguale (C) inferiore
- (**D**) superiore
- 2. Calcolare $\lim_{x \to +\infty} \frac{1}{\ln \sin \operatorname{arctg} x}$ (A) $-\infty$ (B) $\frac{\pi}{2}$ (C) 0 (D) 1
- **3.** $X \cap (Y \setminus X)$ è uguale a
- (A) $X \cup Y$ (B) $X \cap Y$ (C) \emptyset (D) $Y \setminus X$
- 4. Andrea ha pensato un numero a caso da 1 a 10 e Daniele cerca di indovinarlo andando a tentativi. Qual è la probabilità che Daniele indovini il numero pensato da Andrea al terzo tentativo? (ovviamente Daniele prova sempre numeri diversi e appena indovina smette di fare tentativi).
- (A) 30% (B) 10% (C) 0,1% (D) 1%
- **5.** Quale dei seguenti è il numero maggiore?
- (A) 2^{-3} (B) 3^{-2} (C) -3^2 (D) -2^3
- **6.** Quale dei seguenti insiemi è contenuto negli altri tre?
- (A) $\{x \in \mathbb{R} : x^2 \le 1\}$ (B) $\{x \in \mathbb{R} : x \ge 0\}$
- (C) $\{x \in \mathbb{R} : x^3 \le 0\}$ (D) $\{x \in \mathbb{R} : x^2 \le 0\}$
- **7.** Sia $f: \{1,3,4,5\} \rightarrow \{1,5,6\}$ una funzione qualunque. Possiamo certamente affermare che:
- (A) f è bigettiva (B) f non è invertibile (C) f è surgettiva
- (**D**) f non è iniettiva
- 8. Quale delle seguenti funzioni ha come grafico una parabo-
- (A) f(x) = 2x + 1 (B) f(x) = (x+1)(2x+1) (C) $f(x) = 2^{x+1}$ (D) $f(x) = \frac{x+1}{2x-1}$
- **9.** Quale delle seguenti funzioni è decrescente?
- (A) 1 1/x (B) $x^{\sqrt{3}-1}$ (C) $(\sqrt{3}-1)^x$ (D) $\log_{\sqrt{3}} x 1$
- **10.** La funzione inversa di f(x) = 1 x/2 è:
- (A) g(x) = 1 + 2x (B) g(x) = 2 2x (C) g(x) = x 1/2
- **(D)** g(x) = (x-1)/2

11. Dati $x_1 = -1, x_2 = 1, x_3 = 3, x_4 = 1, y_1 = 2, y_2 = 1$ $2, y_3 = 2, y_4 = 2$ calcolare cov(x, y)

VARIANTE: 1

- (**A**) 0 (**B**) 0.5 (**C**) -0.5 (**D**) 1
- 12. Viene lanciata una coppia di dadi. Quale dei seguenti eventi è il più probabile?
- (A) somma uguale a 10 (B) entrambi pari (C) somma dispari (D) dadi doppi
- 13. Calcolare $\lim_{x\to +\infty} \frac{\ln(2^x + \sin x)}{x}$ (A) 0 (B) 2 (C) non esiste (D) $\ln 2$
- **14.** Siano $x_k = k$ con $k = 1 \dots 6$ i possibili esiti del lancio di un dado Calcolare $\sigma^2 = var(x)$. (A) $\frac{33}{42}$ (B) $\frac{25}{36}$ (C) $\frac{35}{12}$ (D) $\frac{18}{5}$
- 15. Quale dei seguenti predicati è vero?
- (A) $\forall a > 0 \forall b > 0$: $x^2 < b \implies x^3 < a$
- **(B)** $\forall a > 0 \forall b > 0 \colon x^3 < b \implies x^2 < a$
- (C) $\forall a > 0 \exists b > 0 : x^3 < b \implies x^2 < a$
- **(D)** $\forall a > 0 \,\exists b > 0 \colon x^2 < b \implies x^3 < a$
- 16. Calcolare

$$\lim_{x \to +\infty} \frac{\log_3(1 + x^2 + 2^x)}{\sqrt{1 + x} \cdot (1 + \sqrt{x - 1})}$$

- (A) $+\infty$ (B) $\log_3 2$ (C) 0 (D) 1
- 17. Un lucchetto ha una combinazione formata da 4 cifre ognuna compresa tra 0 e 9. Sapendo che le quattro cifre sono tutte distinte e che la terza cifra è un 7, qual è la probabilità che il lucchetto si apra con la combinazione 9573?
- (A) 1/504 (B) 1/60 (C) 1/125 (D) 1/42
- 18. Sono state fatte cento misure x_1,\ldots,x_{100} e sappiamo che $\sum_{i=1}^{100} x_i = 50, \sum_{i=1}^{100} x_i^2 = 30. \text{ Calcolare la varianza } var(x).$ **(A)** 1 **(B)** 1.6 **(C)** 0.05 **(D)** 0.56
- 19. Un sacchetto contiene 4 caramelle alla menta e 6 caramelle alla liquirizia. Ada pesca a caso 3 caramelle. Qual è la probabilità che siano tre caramelle alla menta?
- (A) 1/240 (B) 1/120 (C) 24/1000 (D) 1/30
- 20. Il numero

$$\frac{42}{7+\arctan(9^9+1)}-\frac{42}{7+\arctan(9^9-1)}$$

(A) è negativo (B) è positivo (C) è $+\infty$ (D) è zero

Prova N.1 parte 1: risposte
Matematica e Statistica 2016
Viticoltura ed Enologia
19 gennaio 2017

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 risposte: B B D C - - - - - C B A - - B C A - A

Ricordiamo che se Z ha distribuzione normale standard, si ha P(Z > 1.00) = 16%, P(Z > 1.28) = 10%, P(Z > 1.64) = 5%, P(Z > 2.00) = 2.3%, P(Z > 2.33) = 1%, P(Z > 2.58) = 0.5%, P(Z > 3.00) = 0.1%.

- ${\bf 1.}\;$ Una quantità x viene prima aumentata del 30% e poi il risultato viene diminuito del 30%. Si ottiene una quantità y che rispetto a x è
- (A) non si può dire (B) inferiore (C) superiore
- (D) esattamente uguale
- **2.** Calcolare $\lim_{x\to +\infty} \ln \cos \arctan x$
- (A) 1 (B) $-\infty$ (C) 0 (D) $\frac{\pi}{2}$
- **3.** $X \cup (Y \setminus X)$ è uguale a **(A)** $Y \setminus X$ **(B)** $X \cap Y$ **(C)** \emptyset **(D)** $X \cup Y$
- 4. Andrea ha pensato un numero a caso da 1 a 100 e Daniele cerca di indovinarlo andando a tentativi. Qual è la probabilità che Daniele indovini il numero pensato da Andrea al terzo tentativo? (ovviamente Daniele prova sempre numeri diversi e appena indovina smette di fare tentativi).
- (A) 0.1% (B) 10% (C) 1% (D) 3%
- $\mathbf{5.}-$
- 6. -
- **7.** —
- 8. —
- 9.-
- $\mathbf{10.}-$

11. Dati $x_1 = -1, x_2 = 1, x_3 = 3, x_4 = 1, y_1 = 1, y_2 = 3, y_3 = 2, y_4 = 2$ calcolare cov(x, y)

VARIANTE: 2

- (A) 1 (B) 0 (C) 0.5 (D) -0.5
- 12. Viene lanciata una coppia di dadi. Quale dei seguenti eventi è il meno probabile?
- (A) dadi doppi(B) somma uguale a 10(C) somma dispari(D) entrambi pari
- **13.** Calcolare $\lim_{x \to +\infty} \frac{\ln x}{\sin(2^x)}$
- (A) non esiste (B) 0 (C) 2 (D) $\ln 2$
- 14. —
- 15. -
- 16. Calcolare

$$\lim_{x \to +\infty} \frac{\log_2(1 + x^3 + 3^x)}{\sqrt{1 + x} \cdot (1 + \sqrt{x - 1})}$$

- **(A)** 1 **(B)** $\log_2 3$ **(C)** 0 **(D)** $+\infty$
- 17. Un lucchetto ha una combinazione formata da 4 cifre ognuna tra 0 e 9. Sapendo che le quattro cifre sono tutte dispari e che la terza cifra è un 7, qual è la probabilità che il lucchetto si apra con la combinazione 9573?
- **(A)** 1/42 **(B)** 1/60 **(C)** 1/125 **(D)** 1/504
- **18.** Sono state fatte 25 misure x_1, \ldots, x_{25} e sappiamo che $\sum_{i=1}^{25} x_i = 30, \sum_{i=1}^{25} x_i^2 = 50.$ Calcolare la varianza var(x).
- $(\mathbf{A}) \ 0.56 \ (\mathbf{B}) \ 0.05 \ (\mathbf{C}) \ 1 \ (\mathbf{D}) \ 1.6$
- 19. –
- 20. Il numero

$$\frac{42}{7-\arctan(9^9+1)}-\frac{42}{7-\arctan(9^9-1)}$$

(A) è positivo (B) è zero (C) è negativo (D) è $+\infty$

Prova N.1 parte 1: risposte
Matematica e Statistica 2016
Viticoltura ed Enologia
19 gennaio 2017

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 risposte: C D B C - - - - D - D - A - - B A - - D

Ricordiamo che se Z ha distribuzione normale standard, si ha P(Z > 1.00) = 16%, P(Z > 1.28) = 10%, P(Z > 1.64) = 5%, P(Z > 2.00) = 2.3%, P(Z > 2.33) = 1%, P(Z > 2.58) = 0.5%, P(Z > 3.00) = 0.1%.

- 1. Una quantità x viene prima diminuita del 20% e poi il risultato viene aumentato del 20%. Si ottiene una quantità y che rispetto a x è
- (A) superiore (B) esattamente uguale (C) inferiore
- (D) non si può dire
- 2. Calcolare $\lim_{x\to 0} \frac{1}{\ln \cos \operatorname{arctg} x}$ (A) 1 (B) $\frac{\pi}{2}$ (C) 0 (D) $-\infty$
- **3.** $(X \cup Y) \setminus X$ è uguale a **(A)** \emptyset **(B)** $Y \setminus X$ **(C)** $X \cup Y$ **(D)** $X \cap Y$
- 4. Andrea ha pensato un numero a caso da 1 a 10 e Daniele cerca di indovinarlo andando a tentativi. Qual è la probabilità che Daniele indovini il numero pensato da Andrea al settimo tentativo? (ovviamente Daniele prova sempre numeri diversi e appena indovina smette di fare tentativi).
- (A) 0.1% (B) 30% (C) 10% (D) 1%
- $oldsymbol{5.}$ -
- $oldsymbol{6.}$
- **7.** –
- 8. —
- $rac{9.-}{10.-}$

11. Dati $x_1 = -1, x_2 = 1, x_3 = 3, x_4 = 1, y_1 = 3, y_2 = 1, y_3 = 2, y_4 = 2$ calcolare cov(x, y) (A) 1 (B) 0.5 (C) 0 (D) -0.5

VARIANTE: 3

- $\overline{f 12.}$ -
- 13. Calcolare $\lim_{x\to +\infty} \frac{2^{\sin x}}{\ln x}$
- (A) 0 (B) $\ln 2$ (C) 2 (D) non esiste
- 14. -
- 15. -
- 16. Calcolare

$$\lim_{x \to +\infty} \frac{\sqrt{1+x} \cdot (1+\sqrt{x-1})}{\log_2(1+x^3+3^x)}$$

- **(A)** 1 **(B)** $\log_3 2$ **(C)** 0 **(D)** $+\infty$
- 17. Un lucchetto ha una combinazione formata da 4 cifre ognuna tra 0 e 9. Sapendo che le quattro cifre sono tutte distinte e tutte dispari, qual è la probabilità che il lucchetto si apra con la combinazione 9573?
- **(A)** 1/120 **(B)** 1/504 **(C)** 1/125 **(D)** 1/42
- <u>18. </u>
- **19.** —
- **20.** Il numero

$$\frac{42}{7+\arctan(9^9-1)}-\frac{42}{7+\arctan(9^9+1)}$$

(A) è zero (B) è negativo (C) è $+\infty$ (D) è positivo

Prova	N.1	part	e 1:	rispo	ste
Mater	natica	a e S	Stati	stica	2016
Vitico	ltura	ed 1	Enol	ogia	
10	•	001	_	0	

19 gennaio 2017

VARIANTE: 4

O	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
risposte:	D	_	С	D	-	_	_	_	_	-	D	_	В	_	_	A	_	_	_	_	

Ricordiamo che se Z ha distribuzione normale standard, si ha $P(Z>1.00)=16\%,\ P(Z>1.28)=10\%,\ P(Z>1.64)=5\%,\ P(Z>2.00)=2.3\%,\ P(Z>2.33)=1\%,\ P(Z>2.58)=0.5\%,\ P(Z>3.00)=0.1\%.$

- 1. Una quantità x viene prima diminuita del 30% e poi il risultato viene aumentato del 30%. Si ottiene una quantità y che rispetto a x è
- (A) superiore(B) non si può dire(C) esattamente uguale(D) inferiore
- 2. —
- $3. (X \cap Y) \setminus X$ è uguale a
- (A) $X \cap Y$ (B) $X \cup Y$ (C) \emptyset (D) $Y \setminus X$
- 4. Andrea ha pensato un numero a caso da 1 a 100 e Daniele cerca di indovinarlo andando a tentativi. Qual è la probabilità che Daniele indovini il numero pensato da Andrea al settimo tentativo? (ovviamente Daniele prova sempre numeri diversi e appena indovina smette di fare tentativi).
- (A) 3% (B) 10% (C) 0,1% (D) 1%
- (11) 570 (B) 1070 (C) 0,170 (B) 1
- $\frac{\mathbf{6.}-}{\mathbf{6.}-}$
- 8. —
- $\overline{10.}$ —

- **11.** Dati $x_1 = -1, x_2 = 1, x_3 = 3, x_4 = 1, y_1 = 1, y_2 = 2, y_3 = 3, y_4 = 4$ calcolare cov(x, y)
- **(A)** 0 **(B)** -0.5 **(C)** 0.5 **(D)** 1
- 12. -
- 13. Calcolare $\lim_{x \to +\infty} \frac{\ln(x + \sin(x))}{2^x}$
- **(A)** 2 **(B)** 0 **(C)** $\ln 2$ **(D)** non esiste
- **14.** —
- **15.** –
- 16. Calcolare

$$\lim_{x \to +\infty} \frac{\sqrt{1+x} \cdot (1+\sqrt{x-1})}{\log_3(1+x^2+2^x)}$$

- **(A)** $\log_2 3$ **(B)** 1 **(C)** 0 **(D)** $+\infty$
- **17.** –
- 18. -
- 19. -
- 20. -

Prova N.1 parte 1: risposte Matematica e Statistica 2016 Viticoltura ed Enologia 19 gennaio 2017

10. -

VARIANTE: 5

1 2 3 4 5 6 7 8 9 10 11 1	12 13 14 15 16 17 18 19 20
risposte: C - A	- - - - - - -
-	P(Z > 1.00) = 16%, P(Z > 1.28) = 10%, P(Z > 1.64) = 5%,
P(Z > 2.00) = 2.3%, P(Z > 2.33) = 1%, P(Z > 2.58) = 0.5%,	
() () () () () () () () () ()	
$\overline{1}$. Una quantità x viene prima diminuita del 20% e poi il	11. —
risultato viene aumentato del 25%. Si ottiene una quantità y	<u> </u>
che rispetto a x è	12. $-$
(A) superiore (B) non si può dire (C) esattamente uguale	
(D) inferiore	<u>13.</u> —
$\overline{2.}$	14. —
$3. (X \setminus Y) \cup Y$ è uguale a	11. —
(A) $X \cup Y$ (B) $X \cap Y$ (C) $Y \setminus X$ (D) \emptyset	15. $-$
4. –	16
5	17
6	<u>17. – </u>
$egin{array}{c} 4 \ \hline 5 \ \hline 6 \ \hline 7 \ \hline 8 \ \hline \end{array}$	18. $-$
8. –	
$\frac{9}{9}$. $-$	19
<u>y. —</u>	

20. —

Prova N.1 parte 1: risposte Matematica e Statistica 2016 Viticoltura ed Enologia 19 gennaio 2017

 $\overline{\mathbf{9.}-}$

10. —

VARIANTE: 6

1 2 3 4 5 6 7 8 9 10 11	12 13 14 15 16 17 18 19 20
risposte: B - C	- - - - - - -
Ricordiamo che se Z ha distribuzione normale standard, si ha	P(Z > 1.00) = 16%, P(Z > 1.28) = 10%, P(Z > 1.64) = 5%,
P(Z > 2.00) = 2.3%, P(Z > 2.33) = 1%, P(Z > 2.58) = 0.5%,	P(Z > 3.00) = 0.1%.
1. Una quantità x viene prima aumentata del 25% e poi il	11
risultato viene diminuito del 20%. Si ottiene una quantità y	10
che rispetto a $x \in \mathbb{R}$	12
(A) non si può dire (B) esattamente uguale (C) inferiore	19
(D) superiore	13
2	14
3. $X \setminus (X \setminus Y)$ è uguale a	
$(\mathbf{A}) \emptyset (\mathbf{B}) X \cup Y (\mathbf{C}) X \cap Y (\mathbf{D}) Y \setminus X$	15
4	16
$egin{array}{c} {\bf 4.} - \ {f 5.} - \end{array}$	-
$\overline{6.}$	<u>17. – </u>
$rac{6}{7}$	18
8	

20. —

 $\underline{19.}$