Sistemi lineari omogenei di equazioni differenziali

E. Paolini

5 dicembre 2014

ESPONENZIALE DI MATRICI

Sia A una matrice quadrata $n \times n$. Definiamo la norma (norma operatoriale) di A come segue:

$$||A|| = \sup_{|v| \le 1} |Av|$$

dove $|v|=\sqrt{v_1^2+\cdots+v_n^2}$ è l'usuale norma del vettore $v\in\mathbb{R}^n$. Osserviamo che $v\mapsto Av$ è una funzione continua e che $\{v\colon |v|\le 1\}$ è un insieme compatto, dunque il sup nella definizione è in realtà un max.

Per le proprietà del sup si ha:

$$|Av| \le ||A|| |v|$$
 e $||AB|| \le ||A|| ||B||$.

Dunque possiamo affermare il valore assoluto di ogni elemento di una matrice si stima con la norma della matrice: $|A_{ij}| \le ||A||$, infatti:

$$|A_{ij}| = |(Ae_i)_i| \le |Ae_j| \le ||A||$$

(dove e_i è il *j*-esimo vettore della base canonica di \mathbb{R}^n).

Se A_k è una successione di matrici, diremo che $A_k \to A$ se ogni elemento della matrice A_k converge al corrispondente elemento della matrice $A: (A_k)_{ij} \to A_{ij}$. Questo corrisponde a considerare la matrice $n \times n$ come un vettore dello spazio $\mathbb{R}^{(n^2)}$.

Se A(t) è una funzione a valori matrici (ovvero una matrice i cui elementi sono funzioni di t), si potrà farne la derivata come si fa per le funzioni vettoriali: $(A'(t))_{ij} = (A_{ij}(t))'$ cioè componente per componente. Le usuali regole per le derivate valgono anche per le matrici, in particolare non è difficile verificare (si espliciti la definizione del prodotto di matrici) che

$$(A(t)B(t))' = A'(t)B(t) + A(t)B'(t)$$

dove, puntualizziamo, è importante mantenere i prodotti nell'ordine giusto, in quanto il prodotto di matrici può non essere commutativo.

Se A è una matrice quadrata, si definisce la matrice potenza A^k per ogni k naturale, mediante le proprietà

$$A^0 = I, \qquad A^{k+1} = A^k A.$$

(se A è invertibile si possono definire anche le potenze negative $A^{-k} = (A^{-1})^k = (A^k)^{-1}$).

Definiamo allora la matrice esponenziale di *A*:

$$e^A = \sum_{k=0}^{\infty} \frac{A^k}{k!}.$$

Per dare significato a questa definizione dobbiamo verificare che la serie appena scritta sia convergente. Cioè dobbiamo verificare che per ogni coppia di indici *ij* sia convergente la serie numerica:

$$\sum_{k=0}^{\infty} \frac{(A^k)_{ij}}{k!}.$$

Per quanto detto prima sappiamo che $|(A^k)_{ij}| \leq ||A^k|| \leq ||A||^k$. Dunque la serie in questione è assolutamente convergente in quanto il suo valore assoluto si stima con la serie

$$\sum_{k=0}^{\infty} \frac{\|A\|^k}{k!} = e^{\|A\|}$$

che è convergente. La definizione della matrice e^A è dunque ben posta e si ha

$$||e^A|| \le e^{||A||}.$$

Teorema 0.1 (proprietà dell'esponenziale matrice). Siano A e B matrici quadrate $n \times n$ e t uno scalare. Valgono le seguenti proprietà:

- 1. $e^0 = I$ (dove $0 \ \hat{e}$ la matrice nulla $n \times n$ ed $I \ \hat{e}$ la matrice identità con le stesse dimensioni);
- 2. se AB = BA allora $e^AB = Be^A$;
- 3. $(e^{tA})' = Ae^{tA}$;
- 4. $e^{-A} = (e^A)^{-1}$ (in particolare la matrice esponenziale è sempre invertibile):
- 5. se u(t) è una funzione a valori in \mathbb{R}^n che soddisfa l'equazione differenziale u'(t) = Au(t) allora $u(t) = e^{tA}u(0)$;
- 6. se AB = BA allora $e^{A+B} = e^A e^B$;
- 7. se A è invertibile allora $e^{ABA^{-1}} = Ae^BA^{-1}$;
- 8. se A è la matrice diagonale $A = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$, allora e^A è pure una matrice diagonale con $e^A = \operatorname{diag}(e^{\lambda_1}, \ldots, e^{\lambda_n})$;
- 9. se A è una matrice triangolare con la diagonale nulla (cioè $A_{ij}=0$ se $i\geq j$) allora $e^A=\sum_{k=0}^n \frac{A^k}{k!}$ (basta sommare i primi n+1 termini);
- 10. se B è una matrice triangolare (cioè $B_{ij} = 0$ se i > j) allora B = D + A con D matrice diagonale e A matrice triangolare con la diagonale nulla e quindi $e^B = e^D e^A$ si può calcolare riconducendosi ai punti precedenti.

Dimostrazione. 1. Per quanto riguarda e^0 osserviamo che per definizione $0^0 = I$ mentre $0^k = 0$ se k > 0. Dunque direttamente dalla definizion si ottiene $e^0 = I$.

2. Se AB = BA osserviamo che sia ha anche $A^kB = BA^k$ (la matrice B commuta con ogni fattore del prodotto A^k). Dunque:

$$\sum_{k=0}^{N} \frac{A^k}{k!} B = B \sum_{k=0}^{N} \frac{A^k}{k!}$$

e passando al limite $N \to \infty$ si ottiene $e^A B = B e^A$.

3. Per calcolare la derivata di e^{tA} vogliamo dimostrare che la serie che definisce e^{tA} converge totalmente quando t varia in un qualunque intervallo limitato. Poniamo allora $t \in [-M, M]$. Si ha:

$$\sup_{t \in [-M,M]} \frac{\|(tA)^k\|}{k!} = \sup_{t \in [-M,M]} \frac{|t|^k \|A^k\|}{k!} \le \frac{M^k \|A\|^k}{k!}$$

la cui serie è convergente qualunque sia $M \in \mathbb{R}$. Dunque la serie che definisce e^{tA} è una serie di funzioni continue e derivabili che converge totalmente su ogni intervallo limitato. Possiamo quindi derivare la serie termine a termine:

$$(e^{tA})' = \sum_{k=0}^{\infty} \frac{((tA)^k)'}{k!} = \sum_{k=1}^{\infty} \frac{kt^{k-1}A^k}{k!} = A\sum_{k=1}^{\infty} \frac{t^{k-1}A^{k-1}}{(k-1)!} = Ae^{tA}.$$

4. Dimostriamo ora che $U(t) = e^{tA}e^{-tA} = I$ per ogni t. Si ha:

$$U'(t) = Ae^{tA}e^{-tA} + e^{tA}(-A)e^{-tA} = Ae^{tA}e^{-tA} - Ae^{tA}e^{-tA} = 0$$

 $(Ae^{tA}=e^{tA}A$ in quanto A e tA commutano). Dunque U'(t)=0 cioè U(t) è costante ovvero U(t)=U(0). Ma U(0)=I in quanto $e^0=I$ e quindi U(t)=I per ogni t.

- 5. Prendiamo l'equazione u' = Au, moltiplicando a sinistra per e^{-tA} l'equazione diventa $e^{-tA}u' e^{-tA}Au = 0$ cioè $(e^{-tA}u)' = 0$. Questo significa che la funzione $e^{-tA}u = c$ costante e moltiplicando a sinistra per e^{tA} si ottiene dunque $u = e^{tA}c$ come volevasi dimostrare.
- 6. Per dimostrare la proprietà $e^{A+B}=e^Ae^B$ consideriamo la quantità $U(t)=e^{-t(A+B)}e^{tA}e^{tB}$. Se dimostriamo che U è costante, visto che u(0)=I si avrà anche U(1)=I che è equivalente a quanto vogliamo dimostrare. Dunque verifichiamo che la derivata è nulla, sfruttando l'ipotesi AB=BA che ci permette di far commutare i prodotti:

$$U'(t) = -(A+B)e^{-t(A+B)}e^{tA}e^{tB} + e^{-t(A+B)}Ae^{tA}e^{tB} + e^{-t(A+B)}e^{tA}Be^{tB}$$

= $[-(A+B) + A + B]U(t) = 0.$

- 7. Se A è invertibile allora $(ABA^{-1})^k = ABA^{-1}ABA...ABA^{-1} = AB^kA^{-1}$. Dunque nelle somme parziali della serie che definisce l'esponenziale $e^{ABA^{-1}}$ si può raccogliere A a sinistra e A^{-1} a destra e al centro rimane la serie che definisce e^B .
- 8. Se la matrice A è diagonale con $A_{ii} = \lambda_i$ allora A^k risulta essere una matrice diagonale con $(A^k)_{ii} = \lambda_i^k$. Dunque nella definizione di esponenziale e^A i termini della serie sono tutte matrici diagonali, e sulla diagonale compare la serie che definisce l'esponenziale e^{λ_i} .
- 9. Se A è una matrice triangolare con $A_{ij}=0$ quando $i\geq j$, si osserva che A^2 avrà degli zeri anche sopra la diagonale: $(A^2)_{ij}=0$ quando $i+1\geq j$ (si applichi la definizione di prodotto, riga per colonna). Nelle moltiplicazioni successive A^3,A^4,\ldots si aggiungerà sempre una diagonale di zeri finché la matrice non si annulla completamente

 $A^n = 0$. Dunque la serie che definisce e^A contiene solo un numero finito di termini (i primi n + 1) e può essere calcolata esplicitamente.

10. L'ultima proprietà è una osservazione che non richiede dimostrazione. $\hfill\Box$

1 CLASSIFICAZIONE DELLE SOLUZIONI DEI SISTEMI DI DUE EQUAZIONI DIFFERENZIALI LINEARI DEL PRIMO ORDINE A COEFFICIENTI COSTANTI

In questa sezione studieremo le soluzioni del sistema:

$$\begin{cases} x' = ax + by \\ y' = cx + dy \end{cases}$$

dove $a, b, c, d \in \mathbb{R}$ sono dei parametri fissati e le incognite sono x = x(t) e y = y(t) due funzioni reali di variabile t reale.

Considerando la matrice

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

e ponendo $u = \begin{pmatrix} x \\ y \end{pmatrix}$, il sistema può essere scritto in modo più compatto:

$$u'(t) = Au(t).$$

Sappiamo allora, dalle proprietà dell'esponenziale di matrice, che le soluzioni di tale sistema si possono scrivere nella forma:

$$u(t) = e^{tA}c$$
 $\operatorname{con} c = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$

dove c_1 e c_2 sono costante arbitrarie. In particolare per $c_1 = c_2 = 0$ si ottiene sempre la soluzione costante u(t) = 0. Questo viene chiamato un *punto di equilibrio* del sistema, in quanto la soluzione mantiene per ogni t il valore del dato iniziale. Saremo particolarmente interessati a capire se le soluzioni che si ottengono prendendo un diverso dato iniziale sono *stabili*, cioè convergono al punto (0,0) oppure sono *instabili* e quindi tendono ad andarsene all'infinito.

Caso 1. La matrice A ha due autovalori reali distinti: λ , μ . In questo caso la matrice è dunque diagonalizzabile e si potrà scrivere:

autovalori reali distinti

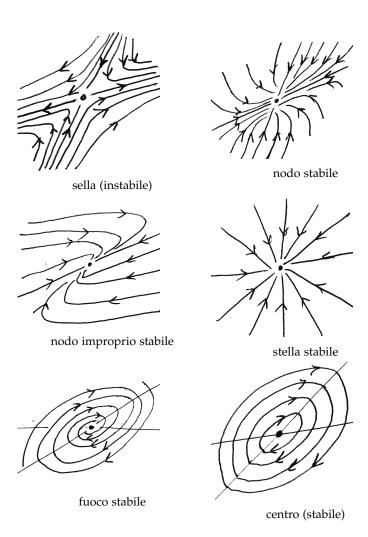
$$A = P\Delta P^{-1}$$

con Δ matrice diagonale $\Delta = \operatorname{diag}(\lambda, \mu)$ e P matrice del cambio di base. Le colonne della matrice P saranno gli autovettori v, w relativi agli autovalori λ , μ infatti (indichiamo con (v,w) la matrice con colonne v e w):

$$AP = A(v, w) = (\lambda v, \mu w) = P\Delta.$$

Dunque le soluzioni del sistema sono:

$$u(t) = e^{tA}c = e^{tP\Delta P^{-1}}c = Pe^{t\Delta}P^{-1}c = P\operatorname{diag}(e^{t\lambda}, e^{t\mu})k$$



dove $k = P^{-1}c$ è un nuovo vettore di costanti arbitrarie. Scrivendo la soluzione nelle coordinate X,Y della base v,w si ha u(t) = (x(t),y(t)) = P(X(t),Y(t)) e quindi

$$\begin{cases} X(t) = k_1 e^{\lambda t} \\ Y(t) = k_2 e^{\mu t}. \end{cases}$$

La relazione tra le coordinate X e Y si può ottenere eliminando la t nelle equazioni precedenti. Ricavando t dalla prima equazione e sostituendo nella seconda si ottiene

$$Y = k_2 \left(\frac{X}{k_1}\right)^{\frac{\mu}{\lambda}} = cX^{\frac{\mu}{\lambda}}.$$

Dunque nel piano X, Y le curve (X(t), Y(t)) hanno supporto contenuto nel grafico delle potenze con esponente μ/λ .

Caso 1a. Se μ e λ hanno segno opposto, allora $\mu/\lambda < 0$ e il grafico della potenze $X^{\mu/\lambda}$ ha l'andamento di una iperbole (ma una vera iperbole si ottiene solamente quando $\mu = -\lambda$). Le soluzioni in questo caso sono dunque instabili. Si dice in questo caso che siamo di fronte ad un punto di *sella*.

Caso 1b. Se μ e λ sono entrambi negativi, allora il grafico della potenza $X^{\mu/\lambda}$ ha l'andamento di una parabola (ma una vera parabola si ottiene solamente quando $\mu=2\lambda$ oppure $\lambda=2\mu$). Inoltre le curve sono orientate verso l'origine (infatti le funzioni $X(t)=k_1e^{\lambda t}$ e $Y(t)=k_2e^{\mu t}$ tendono entrambe a zero per $t\to +\infty$). Si ha in questo caso quello che viene chiamato un *nodo asintoticamente stabile*.

autovalori reali distinti di segno opposto, SELLA

autovalori reali distinti negativi, NODO STABILE *Caso 1c.* Se μ e λ sono entrambi positivi, allora il supporto delle curve soluzioni del sistema è lo stesso del caso precedente. Ma l'orientazione è opposta, per $t \to \infty$ le traiettorie si allontanano dall'origine e vanno all'infinito. Si parla in questo caso di *nodo instabile*.

matrice diagonale,

NODO INSTABILE

autovalori reali distinti positivi,

Caso 2. Se la matrice A è della forma $\operatorname{diag}(\lambda,\lambda)=\lambda I$. Osserviamo che questo è equivalente a dire che A ha un unico autovalore λ con molteplicità algebrica 2 e molteplicità geometrica 2 in quanto in tal caso l'autospazio dell'autovettore λ è l'intero spazio e in qualunque base la matrice risulta essere diagonale. Il sistema di equazioni differenziali è allora banale:

matrice diagonale, STELLA

$$\begin{cases} x' = \lambda x \\ y' = \lambda y. \end{cases}$$

Le soluzioni sono tutte della forma: $x(t) = c_1 e^{\lambda t}$, $y(t) = c_2 e^{\lambda t}$ le cui traiettorie hanno equazione $y = \frac{c_2}{c_1} x$ cioè sono delle rette passanti per l'origine. Se $\lambda < 0$ le curve tendono asintoticamente all'origine (0,0) e si parla in questo caso di *stella asintoticamente stabile*. Se invece $\lambda > 0$ si parla di *stella instabile*. Se $\lambda = 0$ tutte le soluzioni sono curve costanti, diremo quindi che le soluzioni sono *degeneri*.

Caso 3. Supponiamo che la matrice A abbia un unico autovalore reale λ con molteplicità algebrica 2 ma supponiamo che la matrice A non sia diagonale. Sia v un autovettore di A, prendo un qualunque vettore z indipendente da v e considero la base v,z. In questa base si ha $Av = \lambda v$, $Az = \alpha v + \beta z$. Osserviamo che $\beta = \lambda$ in quanto il determinante della matrice A è λ^2 ed è invariante per cambio di base, ma nella base v,z la matrice che rappresenta A è triangolare ed ha λ,β sulla diagonale.

autovalori coincidenti ma non diagonalizzabile, NODO IMPROPRIO

Dunque $Az = \alpha v + \lambda z$. Ora sappiamo che $\alpha \neq 0$ altrimenti z sarebbe un secondo autovettore, la molteplicità geometrica dell'autovalore λ sarebbe 2 e A sarebbe diagonale. Dunque prendiamo $w = z/\alpha$ e otteniamo $Av = \lambda v$, $Aw = v + \lambda w$. Il vettore w così trovato si chiama autovettore generalizzato o pseudo-autovettore. Ponendo P = (v, w) (la matrice del cambio di base, le cui colonne sono v e w) si ha dunque:

$$A = PBP^{-1}, \qquad B = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$$

e quindi le soluzioni sono:

$$u(t) = e^{tA}c = Pe^{tB}P^{-1}c = Pe^{tB}k.$$

 $con k = P^{-1}c.$

La matrice *B* viene chiamata *forma canonica di Jordan* della matrice *A*.

Osserviamo ora che si può scrivere

$$B = \lambda I + N$$
 con $N = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

Da verifica diretta si trova $N^2=0$ e dunque $e^{tN}=I+tN$ (in base all'ultima delle proprietà dell'esponenziale). Dunque

$$u(t) = Pe^{t\lambda I + tN}k = Pe^{t\lambda I}(I + tN)k = Pe^{\lambda t} \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \begin{pmatrix} k_1 \\ k_2 \end{pmatrix}$$
$$= Pe^{\lambda t} \begin{pmatrix} k_1 + k_2 t \\ k_2 \end{pmatrix}$$

da cui, ponendo u=(x,y)=P(X,Y), si trovano le soluzioni nella base v,w:

$$\begin{cases} X(t) = (k_1 + k_2 t)e^{\lambda t} \\ Y(t) = k_2 e^{\lambda t}. \end{cases}$$

Se $\lambda < 0$ le curve tendono all'origine quando $t \to +\infty$ e abbiamo quindi un comportamento asintoticamente stabile. Se invece $\lambda > 0$ le curve tendono all'infinito e si ha dunque un comportamento instabile. Eliminando la t ($t = \frac{1}{\lambda} \log \frac{Y}{k_2}$) e ponendo $a = \frac{k_1}{k_2} - \frac{\log |k_2|}{\lambda}$ si ottiene

$$X(t) = \left(a + \frac{\log|Y(t)|}{\lambda}\right)Y(t).$$

Si vede che per $Y \to 0$ anche $X \to 0$ ma con pendenza dx/dy infinita. Dunque le curve arrivano all'origine risultando tangenti all'asse delle X. D'altra parte per $k_2 = 0$ si trovano delle soluzioni con Y = 0, dunque anche l'asse delle x contiene soluzioni dell'equazione.

Se $\lambda = 0$ si ha una situazione degenere.

Caso 4. Se la matrice A è una matrice reale, (cioè coincide con la propria coniugata: $\overline{A}=A$) con un autovalore complesso $\lambda=\alpha+i\beta$, $\beta\neq 0$, con relativo autovettore complesso v+iw, allora si ha

autovalori complessi coniugati

$$A(v+iw) = \lambda(v+iw)$$

e quindi

$$A(v-iw) = \overline{A(v+iw)} = \overline{\lambda(v+iw)} = \overline{\lambda}(v-iw)$$

che significa che $\overline{\lambda}=\alpha-i\beta$ è anch'esso un autovalore e v-iw è l'autovettore associato. Dunque la matrice A è diagonalizzabile nel campo complesso:

$$A = PDP^{-1}$$
, $P = (v + iw, v - iw)$, $D = \operatorname{diag}(\alpha + i\beta, \alpha - i\beta)$

(P è la matrice che ha come colonne i vettori complessi v+iw e v-iw). Essendo v+iw e v-iw vettori complessi indipendenti, si può facilmente mostrare che anche i vettori reali v,w risultano essere indipendenti. Osserviamo allora che

$$P = (v + iw, v - iw) = (v, w) \begin{pmatrix} 1 & 1 \\ i & -i \end{pmatrix}$$

e che

$$P^{-1} = \begin{pmatrix} 1 & 1 \\ i & -1 \end{pmatrix}^{-1} (v, w)^{-1} = \frac{1}{2} \begin{pmatrix} 1 & -i \\ 1 & i \end{pmatrix} (v, w)^{-1}$$

e quindi nella base v, w la matrice A diventa:

$$\begin{split} \frac{1}{2} \begin{pmatrix} 1 & 1 \\ i & -i \end{pmatrix} \begin{pmatrix} \lambda & 0 \\ 0 & \bar{\lambda} \end{pmatrix} \begin{pmatrix} 1 & -i \\ 1 & i \end{pmatrix} &= \frac{1}{2} \begin{pmatrix} \alpha + i\beta & \alpha - i\beta \\ i\alpha - \beta & -i\alpha - \beta \end{pmatrix} \begin{pmatrix} 1 & -i \\ 1 & i \end{pmatrix} \\ &= \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix}. \end{split}$$

Osserviamo qui che la matrice A è diagonalizzabile in campo complesso, ma non in campo reale. Una rappresentazione *canonica* di A nel campo reale è quella data qui sopra, e viene chiamata *forma canonica reale di Jordan*. I vettori v, w che sono parte reale e parte immaginaria

degli autovettori complessi di A, possono anche essere identificati dalle seguenti proprietà:

$$Av = \alpha v - \beta w$$
, $Aw = \beta v + \alpha w$.

Le soluzioni del sistema sono dunque, al variare di $c \in \mathbb{R}^2$:

$$u(t) = e^{tA}c = Pe^{tD}P^{-1}c = Pe^{tD}\frac{1}{2}\begin{pmatrix} 1 & -i\\ 1 & i \end{pmatrix}k$$

dove si è posto $k = (v, w)^{-1}c$. Dunque

$$u(t) = \frac{1}{2} P \begin{pmatrix} e^{\lambda t} & 0 \\ 0 & e^{\bar{\lambda}t} \end{pmatrix} \begin{pmatrix} k_1 - ik_2 \\ k_1 + ik_2 \end{pmatrix}$$
$$= \frac{1}{2} P \begin{pmatrix} e^{\alpha t + i\beta t} (k_1 - ik_2) \\ e^{\alpha t - i\beta t} (k_1 + ik_2) \end{pmatrix}$$
$$= \frac{1}{2} P e^{\alpha t} \begin{pmatrix} e^{i\beta t} (k_1 - ik_2) \\ e^{-i\beta t} (k_1 + ik_2) \end{pmatrix}.$$

Scrivendo il numero complesso k_1+ik_2 in coordinate polari si potranno trovare ρ e ϕ tali che $k_1+ik_2=\rho e^{-i\phi}$. Si avrà allora

$$\begin{split} u(t) &= \frac{1}{2} \rho e^{\alpha t} P \begin{pmatrix} e^{i\beta t} e^{i\phi} \\ e^{-i\beta t} e^{-i\phi} \end{pmatrix} \\ &= \frac{1}{2} \rho e^{\alpha t} (v, w) \begin{pmatrix} 1 & 1 \\ i & -i \end{pmatrix} \begin{pmatrix} e^{i(\beta t + \phi)} \\ e^{-i(\beta t + \phi)} \end{pmatrix} \\ &= \frac{1}{2} (v, w) \rho e^{\alpha t} \begin{pmatrix} e^{i(\beta t + \phi)} + e^{-i(\beta t + \phi)} \\ i e^{i(\beta t + \phi)} - i e^{-i(\beta t + \phi)} \end{pmatrix} \\ &= (v, w) \begin{pmatrix} \rho e^{\alpha t} \cos(\beta t + \phi) \\ -\rho e^{\alpha t} \sin(\beta t + \phi) \end{pmatrix} \end{split}$$

da cui, se X, Y sono le coordinate di u(t) nella base v, -w, si ha

$$X(t) = \rho e^{\alpha t} \cos(\beta t + \phi))$$

$$Y(t) = \rho e^{\alpha t} \sin(\beta t + \phi)),$$

dove, ricordiamo, α e β sono parte reale e parte immaginaria del primo autovalore complesso, mentre $\rho \geq 0$ e $\phi \in [0,2\pi)$ (ampiezza e fase) sono parametri arbitrari ognuno dei quali ci fornisce una diversa soluzione.

Se $\alpha=0$ (cioè i due autovalori di A sono immaginari puri) allora le soluzioni descrivono nel piano X,Y dei cerchi concentrici centrati nell'origine. Nel piano x,y saranno dunque delle ellissi con gli assi paralleli ai vettori v e w. Questa configurazione si chiama *centro* ed è una configurazione *stabile* (ma non asintoticamente) nel senso che le traiettorie rimangono limitate, pur non convergendo all'origine.

Se $\alpha < 0$ le traiettorie descrivono delle spirali logaritmiche che convergono verso l'origine. Il verso di rotazione è da w verso v se β è positivo, da v verso w se β è negativo. Si dice allora che siamo in presenza di un *fuoco asintoticamente stabile*.

Se $\alpha > 0$ le traiettorie descrivono delle spirali che si allontanano dall'origine divergendo all'infinito. Il senso di rotazione è determinato da β come nel caso precedente. Questa configurazione è chiamata fuoco asintoticamente instabile.

CENTRO (stabile)

FUOCO asintoticamente stabile

FUOCO instabile

1 CLASSIFICAZIONE DELLE SOLUZIONI DEI SISTEMI DI DUE EQUAZIONI DIFFERENZIALI LINEARI

AGGIORNAMENTI

13.12.2014 aggiunte figure e revisione generale.

12.9.2015 piccoli aggiustamenti.