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Introduzione

Ecco a voi il numero �� del Giornalino degli Open Days, una pubblicazio-
ne curata da professori e studenti del Dipartimento di Matematica dell’U-
niversit �a di Pisa e rivolta principalmente a studenti delle scuole secondarie
superiori.

Se state considerando la possibilit �a di intraprendere un percorso univer-
sitario che abbia a che fare con la matematica, troverete materiale che fa
per voi! Anzitutto, potrete leggere una presentazione del Corso di Laurea
in Matematica presso l’Universit �a di Pisa. Oltre a una serie di informazioni
puntuali sull’o�erta didattica e sulle varie opportunit �a di cui godono i no-
stri studenti, troverete alcuni dati statistici a partire dai quali potrete farvi
un’idea del futuro lavorativo che aspetta un neo-laureato in matematica.

A seguire, vi presentiamo tre articoli divulgativi chemostrano come lama-
tematica entri in gioco in contesti diversi. Jacopo Burelli, professore presso
il Liceo Scientifico Pesenti di Cascina, racconta la nascita di un esercizio e
come il contesto dia senso a un problema. Luca Bruni ci accompagna poi in
un viaggio tra teoria dei grafi e algoritmi ispirati al modo in cui le formiche
cercano il cibo, partendo da giochi e curiosit �a per arrivare amodelli pi �u com-
plessi. Nelle pagine successive, ancora Luca ci invita a riflettere, grazie al
confronto con i suoi ex compagni di corso, su alcuni errori legittimi che com-
mettiamo nelle nostre inferenze quotidiane, mostrando come un approccio
matematico possa aiutarci a smontare luoghi comuni e abitudini di ragiona-
mento. Chiudiamo con una rubrica di Sfide matematiche da libri notevoli:
otto problemi selezionati da testi classici di problem solving, con livelli di-
versi di di�colt �a per mettere alla prova intuizione e tecniche. Speriamo che
vi divertiate a risolverli!

Non dimenticate, inoltre, che, se volete a�nare le vostre abilit �a di pro-
blem solving a�rontando altri problemi, ne trovate di ogni genere e livello
nella raccolta linkata alla pagina web del giornalino, che potete raggiungere
tramite il codice QR qui sopra. Scoprirete i molti esercizi apparsi negli scor-
si numeri, completi di soluzioni, utili per proseguire l’allenamento dopo le
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SCANME

Scopri gli altri numeri del giornalino e la raccolta dei pro-
blemi delle edizioni passate all’indirizzo https://www.dm.

unipi.it/terza-missione/home-orientamento/

il-giornalino-degli-open-days/!

sfide di questo numero.
Infine, un ringraziamento speciale a Eva Silvestri, nostra laurenda magi-

strale, che ha pensato e realizzato la copertina!
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Il corso di laurea in

Matematica

Sei indeciso su cosa studiare all’universit �a e sei incuriosito da matematica,
ma non sai bene in che cosa ti potresti imbattere? Proveremo ad aiutarti
a chiarire le idee, mostrandoti le principali caratteristiche del corso di Lau-
rea inMatematica a Pisa e le numerose opportunit �a che o�re sia per quanto
riguarda il percorso universitario che per le prospettive future.

1 Il corso di laurea a Pisa

Il Dipartimento di Matematica dell’Universit �a di Pisa, riconosciuto come Di-
partimento di Eccellenza ����–����, o�re i Corsi di Laurea Triennale eMa-
gistrale inMatematica. Il primo ha una durata di tre anni accademici e preve-
de il conseguimento di ��� Crediti Formativi Universitari (CFU); il secondo
duradueanni eprevede il conseguimentodi���CFU.OgniCFUcorrisponde
orientativamente a �� ore tra lezioni e studio individuale.

Il corso di laurea triennale a Pisa fornisce una solida preparazione di base
nei vari settori della matematica, grazie ad una serie di esami obbligatori.
Gi �a al secondo, ma in particolar modo durante il terzo anno sono previsti
esami a scelta: in questo modo, grazie alla gran quantit �a di corsi a scelta
attivati, ognuno pu �o approfondire gli argomenti che ha trovato di maggior
interesse. Il corso di laurea triennale �e diviso in due curricula ( �e richiesto di
scegliere subito, ma c’ �e la possibilit �a di cambiare in seguito):

• il curriculum fondamentale;

• il curriculum computazionale.

Il primo, pi �u teorico, prevede anche una pi �u approfondita preparazione in
Fisica,mentre il secondo �e pi �u applicativo ed integra lo studio dellaMatema-
tica con quello dell’Informatica. Nella Tabella � sono riportati i due piani di
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Fondamentale Computazionale

I anno
Aritmetica (� CFU)

Fondamenti di programmazione con laboratorio (� CFU)
Laboratorio di introduzione alla matematica computazionale (� CFU)

Analisi matematica � (�� CFU)
Geometria � (�� CFU)

Fisica I con laboratorio (� CFU)

II anno
Algebra � (� CFU)

Analisi numerica con laboratorio (� CFU)
Inglese scientifico (� CFU)

Analisi matematica � (�� CFU)
Geometria � (�� CFU)

Elementi di probabilit �a e statistica (� CFU)
Esame a scelta (� CFU) Algoritmi e strutture dati (� CFU)

III anno
Meccanica razionale (� CFU)

Fisica II (� CFU) Calcolo scientifico (� CFU)
Fisica III (� CFU) Laboratorio computazionale (� CFU)
Laboratorio sperimentale di matematica
computazionale (� CFU)

Linguaggi di programmazione con labora-
torio (� CFU)
Ricerca operativa (� CFU)

� Esami a scelta (�� CFU) � Esami a scelta (�� CFU)
Prova finale (� CFU)

Tabella �:Gli esami della Laurea triennale secondo il Regolamento dell’Anno Accademico
����/���� (vedi [�]).

studi.

La maggior parte dei laureati triennali sceglie di proseguire gli studi con
la magistrale restando a Pisa. I curricula in cui �e diviso il corso di laurea ma-
gistrale sono cinque: applicativo, didattico, generale,modellistico e teorico.
In questo modo, ad ogni studente viene o�erta la possibilt �a di specializzare
il proprio piano di studi nel ramo che pi �u lo ha interessato e appassionato
durante i precedenti anni.

Gli studenti iscritti a matematica possono inoltre usufruire degli ambienti
a loro dedicati all’interno del Dipartimento di Matematica, tra cui varie aule
studio e due aule computer. Qui gli studenti hanno la possibilit �a di cono-
scersi e studiare al di fuori dell’orario di lezione, cos�ı da poter collaborare e
confrontarsi durante lo studio. Con lo stesso spirito agli studenti del primo
anno sono a�ancati dei tutor, studenti pi �u avanti nel percorso che li aiutano
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� Sbocchi occupazionali

ad a�rontare i primi esami universitari.
Il nostro dipartimento collabora inoltre con alcune universit �a estere gra-

zie ad accordi internazionali. Ci sono gli accordi Erasmus, che permettono di
svolgere uno o pi �u semestri di studio oppure lavorare alla tesi presso un’al-
tra universit �a europea. Attualmente sono attivi accordi di questo tipo con
�� corsi di studio in matematica europei. Simili agli accordi Erasmus so-
no gli accordi SEMP (Swiss European Mobility Program); abbiamo accordi
attivi con le Universit �a di Basilea, Friburgo, Ginevra, Neuchatel, con l’EP-
FL di Losanna e con l’ETH di Zurigo. C’ �e poi la possibilit �a di ottenere un
titolo congiunto (double degree) grazie all’accordo con la Hokkaido Univer-
sity. L’Universit �a di Pisa fa parte di Circle U., un’Alleanza Universitaria Eu-
ropea che comprende altri � prestigiosi atenei europei. Dal suo lancio nel
Novembre ����, i partner dell’alleanza cooperano con l’obiettivo di creare
un’universit �a europea inclusiva, interdisciplinare e fortemente orientata alla
ricerca.

Puoi trovare altre informazioni e rimanere aggiornato sui nuovi accordi
sulla pagina dell’Internazionalizzazione

https://www.dm.unipi.it/international/

Per ogni altra curiosit �a, visita la pagina del Corso di Studi seguendo il link
http://www.dm.unipi.it/webnew/it/cds/home-cdsoppure inqua-
drando il QR qui sopra!

SCANME

Visita il sito del Corso di Laurea in Matematica presso l’Universit �a
di Pisa per maggiori informazioni!

2 Sbocchi occupazionali

Qual �e il posto di unmatematico nelmondo? Il progetto “IMestieri deiMate-
matici” ha raccolto alcune storie professionali che possono aiutarti a rispon-
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dere a domande di questo tipo e che forse ti stupiranno. Le trovi sul canale
Youtube del progetto:

https://www.youtube.com/@mestierideimatematici3873

In generale risulta che i laureati in matematica sono soddisfatti della scel-
ta fatta e godono di un ampio spettro di possibilit �a lavorative, e non solo in
ambito scolastico o universitario! In particolare sul sito di Almalaurea si pos-
sono trarre i seguenti dati che riguardano i nostri laureati magistrali, vedi
[�]:

• L’��%dei laureatimagistrali del���� si dichiara soddisfatto del corso
di studi.

• Il tasso di occupazione dei nostri laureatimagistrali del ���� a tre anni
dalla laurea �e il ���% (questo include coloro che proseguono con un
dottorato).

Da alcuni anni, il Dipartimento di Matematica di Pisa si �e attivato per per-
mettere ai suoi studenti, anche triennali, di conoscere le realt �a lavorative del
territorio pisano, ma anche nazionale. Allo stesso tempo, le aziende (e non
solo) che vengono in visita presso il nostro Dipartimento hanno l’occasio-
ne di conoscere gli studenti alla fine del loro percorso di studi. Con questo
duplice scopo �e nato il progetto ”Matematici al Lavoro”.

3 Borse di studio

Un’occasione riservata agli studenti che si iscrivono a matematica �e quel-
la delle borse di studio dell’INdAM (Istituto Nazionale di Alta Matematica
“Francesco Severi”), assegnate tramite un concorso nazionale che si svolge
di solito all’inizio di settembre in diverse sedi in Italia tra cui una �e proprio
Pisa.

In particolare per il corso di laurea triennale in matematica sono bandite
diverse borse di studio (sono �� per l’anno accademico ����/����), ciascu-
na del valore di ���� euro. Le borse possono essere rinnovate annualmente
per i due anni successivi, purch �e lo studente che ne beneficia superi tutti gli
esami entro la fine dell’anno con una media superiore al ��/�� e senza voti
inferiori al ��/��.

Anche per il corso di laurea magistrale sono bandite delle borse INdAM:
per esempio per l’anno ����/���� sono ��, pi �u � dedicate in particolare a

��



Bibliografia

chi si iscrive a Pisa, di cui almeno � per studentesse, come segno concreto
della nostra attenzione alla parit �a di genere.

�E una bella occasione che vale la pena prendere in considerazione! Puoi
trovare tutte le informazioni sul sitohttps://www.altamatematica.it.

Gli studenti che si iscrivono qui a Pisa possono richiedere anche una bor-
sa di studio del DSU (Azienda della Regione Toscana per il Diritto allo Studio
Universitario) sulla base del reddito familiare. I vincitori di questa borsa ot-
tengono l’esonero dalle tasse universitarie, un contributo per le spese e in
alcuni casi anche vitto e alloggio gratuiti. Per avere maggiori informazioni,
puoi visitare il sito https://www.dsu.toscana.it/.

Bibliografia

[�] https://www2.almalaurea.it

[�] https://www.dm.unipi.it/assicurazione-della-qualita/
assicurazione-della-qualita-didattica/
situazione-occupazionale-dei-laureati/

[�] https://www.dm.unipi.it/didattica/laurea-triennale/
regolamento/
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Storia di un esercizio
di Jacopo Burelli, Laureato magistrale a Pisa, adesso professore di Matematica e
Fisica presso Liceo Scientifico Pesenti, Cascina

1 L’importanza del contesto

Problema

Trovare x tale che
(x� 6)3 = 3

p
x+ 6.

Probabilmente state gi �a pensando a diversi modi per risolvere il proble-
ma e, con buona probabilit �a, almeno una delle soluzioni che troverete sar �a
corretta. Ma che cosa ci dice davvero questo sul problema? In realt �a, mol-
to poco. Da dove proviene questo esercizio? �E tratto da un compito o da
un’esercitazione? Aritmetica, Analisi, Analisi Numerica, o qualche altro am-
bito? Come dovrei a�rontarlo? Quali strumenti posso utilizzare? E, inoltre,
a quale insieme appartiene x?

Per dare una panoramica di come sono arrivato a formulare il problema,
faccio unpasso indietro e provo amotivare il processo creativo che sta dietro
alla costruzione di questo esercizio. �E proprio questo processo che mi ha
interessato a tal puntoda spingermi a scriverequesto articolo, il cui obiettivo
vorrebbe essere, pi �u che la soluzione in s �e, l’importanza del contesto.

Ho pensato a questo problemamentre preparavo un compito per una ter-
za di liceo scientifico e questomi ha portato a riflettere su quanto sia impor-
tante il contesto in cui un problema viene proposto. Ilmodulo didattico lega-
to alla sua risoluzione riguardava le funzioni, quindi vi suggerisco di provare
a ragionare in questi termini, cos�ı da assecondare il mio processo creativo.

Se mi fossi trovato questo esercizio in un compito delle scuole superio-
ri, sarei stato in grado di individuare una possibile soluzione? No, perch �e,
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nonostante il problema nasca dalla seguente osservazione, non lo avrei in-
quadrato nello stesso contesto di chi lo ha scritto.

Possiamo notare infatti che, se proviamo a invertire l’equazione

(x� 6)3 = y,

si ottiene
x = 3

p
y + 6,

cio �e le due funzioni sonouna l’inversa dell’altra. In altre parole, sto cercando
un valore di x che soddisfi

f(x) = f
�1(x).

Poich �e avevamo visto il teorema della simmetria tra il grafico di una fun-
zione f e quello della sua inversa rispetto alla bisettrice, potevo allora cerca-
re le soluzioni proprio su y = x, andando a risolvere il problema semplificato

(x� 6)3 = x.

Figura �: Intersezione tra i grafici di 3
p
x+ 6 e (x� 6)3.

Tuttavia, anche in questopassaggio, hodatoper scontate alcune cose: per
esempio ilmotivoper cui la funzione (x�6)3 �e invertibile, quale sia il dominio
di f , e cos�ı via.

L’invertibilit �a di f �e facilmente giustificabile. A meno di una traslazione
(sulla quale, a sua volta, viene scaricata ulteriore conoscenzamatematica) la
funzione “ �e” x3. In alternativa, si possono utilizzare le derivate: insomma,
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� L’importanza del contesto

dopo un corso di Analisi universitario questo non dovrebbe rappresentare
un problema.

A scopi didattici, ne diamo comunque una dimostrazione a partire dal-
le definizioni, ricorrendo a strumenti e�caci e disponibili gi �a dalle scuole
superiori: le definizioni.

Presa f : R �! R definita da f(x) = (x� 6)3, per x1, x2 2 R e y 2 R si ha

• Iniettivit �a:

(x1 � 6)3 = (x2 � 6)3 () x1 � 6 = x2 � 6 () x1 = x2.

• Surgettivit �a:

y = (x� 6)3 () 3
p
y = x� 6 () x = 3

p
y + 6.

Dopo aver inoltre preso coscienza del fatto che stavo cercando, quasi au-
tomaticamente, una soluzione reale, e degli impliciti che stavo assumendo
lungo il percorso (si noti, ad esempio, la tranquillit �a che il Teorema fonda-
mentale dell’algebra garantisce al solutore circa l’esistenza di tale x, inter-
pretando f(x)�x come un polinomio) ho scelto quella chemi �e sembrata la
soluzionemigliore: non assegnare il problema in un compito scritto di terza
scientifico, e mettere a dura prova l’ego di un caro amico, noto volto del di-
partimento: LucaBruni. A lui ho fornito il problemaesattamente nella forma
presentata all’inizio del paragrafo, in quanto particolarmente interessato a
osservare il suo processo risolutivo.

”Sembra orribile elevando, per �o mentre ero in macchina e pen-
savo ai grafici, e ora forse ho fatto il conto male ma mi sembra
che siano una la funzione inversa dell’altro, quindi stai cercando
di risolvere f(x) = f

�1(x), quindi stai cercando le intersezioni
tra f(x) e f

�1(x) e i due grafici si intersecano nella retta x = y,
quindi �e su�ciente che risolvi unmembro uguale a x. Bellissimo
questo problema, bellissimo ti giuro sono troppo felice di averlo
risolto cos�ı, fantastico, basta mettere la parte di sinistra uguale
a x o la parte di destra uguale a x, e funziona.
Comunque posso dire un esercizio bellissimo? Cio �e ci ho dovuto
pensare un pochino, ha una soluzione molto elegante, per �o non
so il target, se �e un esercizio sulle funzioni inverse �e top, spetta-
colare per �o �e molto di�cile a meno che non l’abbiano visto, ho
usato troppe competenze che loro non hanno, ho pensato al gra-
fico ho ripensato al teorema.. per �o bellissimo problema.”
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Questa soluzione, porta a trovare x = 8. Come?

2 La nascita

Possiamo usare il criterio delle radici razionali, gi �a presente sui testi dalle
scuole superiori (se siamo abbastanza fortunati da averlo nel programma-
zione didattica e ricordarcelo)

Criterio delle radici razionali [�]

Sia
p(x) = anx

n + an�1x
n�1 + · · ·+ a1x+ a0

un polinomio a coe�cienti interi, con an 6= 0. Se p

q
2 Q, con

gcd(p, q) = 1, �e una radice razionale di p(x), allora

p | a0 e q | an.

In altre parole, le possibili radici razionali di p(x) sono della forma

±divisore di a0
divisore di an

.

Portando tutto a sinistra, l’equazione

(x� 6)3 = x

diventa
(x� 6)3 � x = 0.

Sviluppando il cubo:

(x� 6)3 = x
3 � 18x2 + 108x� 216,

quindi
(x� 6)3 � x = x

3 � 18x2 + 107x� 216.

A questo punto posso applicare il Criterio delle radici razionali: dato che il
polinomio

p(x) = x
3 � 18x2 + 107x� 216

��
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�e a coe�cienti interi e ha coe�ciente direttivo an = 1, ogni eventuale ra-
dice razionale deve essere un divisore del termine noto a0 = �216, cio �e un
numero del tipo

±d con d | 216.

In particolare, l’elenco dei divisori positivi di 216 �e

1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 27, 36, 54, 72, 108, 216,

e quindi i candidati sono

±1,±2,±3,±4,±6,±8,±9,±12,±18,±24,±27,±36,±54,±72,±108,±216.

Partendo dal pi �u piccolo, con un po’ di pazienza troviamo x = 8.

p(8) = 83 � 18 · 82 + 107 · 8� 216 = 512� 18 · 64 + 856� 216 = 0.

A questo punto ci siamo chiesti se potevamo dimostrare che x = 8 era
l’unica soluzione reale. Applicando ad esempio la Regola di Ru�ni� al poli-
nomio

p(x) = x
3 � 18x2 + 107x� 216

con radice x = 8, si ottiene la seguente scomposizione:

x
3 � 18x2 + 107x� 216 = (x� 8)(x2 � 10x+ 27).

E�ettivamente il polinomioquoziente di secondogradononha radici reali,
in quanto una sua riscrittura �e

x
2 � 10x+ 27 = (x� 5)2 + 2.

e finalmente concludiamo l’esercizio.
Questo potrebbe essere riformulato ed enunciato nel seguente modo:

Problema

Dimostrare che x = 8 �e l’unica soluzione reale di

(x� 6)3 = 3
p
x+ 6.

�Ricordiamo che la regola di Ru�ni �e un metodo alternativo di e�ettuare la divisione tra
polinomi nel caso in cui il polinomio divisore sia di primo grado.
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Tuttavia, la gioia di Luca e il mio interesse per la didattica mi hanno por-
tato a chiedermi quali potessero essere altri modi di risolvere un problema
enunciato in questo modo, possibilmente coinvolgendo aree diverse della
Matematica. Un obiettivo era quello di ampliare le conoscenze generali e
trasversali nate attorno a questo esercizio e, allo stesso tempo, di riporta-
re ai ragazzi una riflessione sui possibili diversi metodi di risoluzione di un
problema, tema spesso trascurato.

Una delle frasi che pi �umi �e rimasta impressa delmio professore di Analisi
� e � �e infatti:

”anche una patologia pu �o diventare uno strumento.”

3 Approfondire un problema

Per perseguire questo interesse, ho deciso di chiede-
re aiuto su Math Stack Exchange (MSE), un noto sito
di domande e risposte frequentato da studenti e pro-
fessori di matematica a ogni livello. Per completez-
za, rimando alla domanda originale tramite il qrcode
a fianco.
Nel seguito dell’articolo,mi impegner �o a passare in rassegna e ad analizzare
alcuni degli approcci segnalati.

John Bentin –Math Stack Exchange

It is easy to spot the solution x = 8 and verify it by substitution. The less
trivial part is showing this solution to be unique. A sketch of the graphs of
y = (x � 6)3 and y = x1/3 + 6 shows clearly that they cross only once, at
y = x = 8, while the line y = x elsewhere lies between the two graphs
(because they are inverse).
However, this is not a mathematically rigorous method. We can prove that
our solution is unique ifwe can show that (x�6)3 < x < x1/3+6whenx < 8,
and x1/3 + 6 < x < (x� 6)3 when x > 8. Thus there are four inequalities to
verify.
The first inequality may be expressed as (x � 6)3 � x < 0 for x < 8. By
expansion,

(x� 6)3 � x = x3 � 18x2 + 107x� 216 = (x� 8)(x2 � 10x+ 27),
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where the factor x � 8 is to be expected from our original spotted solution.
The quadratic factor can be written as (x� 5)2 + 2, which is always positive,
and the sign of the other factor x� 8 therefore establishes the inequality.
The second inequality can be put in the form x � 6 < x1/3. Since cubing
preserves order, we can write this as (x � 6)3 < x, and the proof proceeds
similarly as before. The proofs of the remaining two inequalities are also
similar.

John mette bene in luce il fatto che la semplificazione che riconduce alla
ricerca delle soluzioni su y = x non �e a�atto automatica, ma richiede un’ar-
gomentazione adeguata. Tale argomentazione risulta per �o particolarmen-
te comprensibile nell’approccio proposto da Bentin (nonostante altri contri-
buti, anche temporalmente precedenti come quello di heropup sempre sul
forum).

Mari Strup -Math Stack Exchange

Here is what I feel is a relatively fun method. Begin by substituting y3 := x
to obtain the equation

(y3 � 6)3 = y + 6

and notice that if y3 � 6 = y then

(y3 � 6)3 = y3 = y + 6

so we need only solve the equation y3 � 6 = y. Rearrange to obtain

y(y2 � 1) = 6

then factor using di�erence of two squares to find

y(y � 1)(y + 1) = 6.

In other words, we just need to find three consecutive numbers which have
product 6. Famously 1⇥ 2⇥ 3 = 6, so if y = 2 then

y(y � 1)(y + 1) = 2⇥ 1⇥ 3 = 6,

thus y = 2 is a valid solution. Since y3 = x it follows that x = 8.

Mari, per quanto fornisca amio avviso una soluzione a posteriori, fa emer-
gere una bellissima idea di sostituzione, che conduce a y(y � 1)(y + 1), tra-
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sportando la ricerca delle soluzioni a un’osservazione aritmetica non avan-
zata e estremamente e�cace. Certamente, la soluzione di Mari �e influenza-
ta dalla conoscenza dell’esistenza di soluzioni intere (nella domanda, infat-
ti, �e presente un commento su x = 8), che ha guidato la sua ricerca in una
fattorizzazione del tipo proposto.

Dan -Math Stack Exchange

Converting to polynomial equation

Expand the cube to get:

x9 � 54x8 + 1296x7 � 18162x6 + 163944x5 � 989496x4

+3996972x3 � 10429560x2 + 15968015x� 10941048 = 0

Newton’s Method

Let

f(x) = (x� 6)3 � (x
1
3 + 6), f 0(x) = 3(x� 6)2 � 1

3
x�2/3.

xn+1 = xn � (x� 6)3 � (x
1
3 + 6)

3(x� 6)2 � 1
3x

�2/3
.

n � � � � � �
xn ⇡ � �.�� �.�� �.�� ��.�� ��.��

n � � � � ��
xn ⇡ ��.�� �.�� �.�� �.�� �.��

The sequence converges to the root x = 8.

Fixed-point iteration

Solving for the cube root gives

x = (x
1
3 + 6)

1
3 + 6.

n � � � � � � � � �
xn ⇡ � �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.��

The iteration converges rapidly to x = 8.
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Bisection Method

A simple general-purpose algorithm for finding real roots.

Pseudocode

def bisect_solve(f, lo, hi):
left_neg = f(lo) < 0
right_neg = f(hi) < 0
if left_neg == right_neg:

raise ValueError(’No sign change’)
for _ in range(100):

x = (lo + hi) / 2
y = f(x)
if y == 0:

return x
elif (y < 0) == left_neg:

lo = x
else:

hi = x
return x

Applying the method on [0, 10] yields x = 8.

Il contributo di Dan si distingue dagli altri per la sua natura computaziona-
le. Dan esplora infatti tre approcci algoritmici: dal metodo di Newton, alla
bisezione, fino all’iterazione di punto fisso [�], mostrando come tutti con-
ducano coerentemente alla stessa soluzione reale. La capacit �a di mettere in
evidenza i limiti pratici di alcuni approcci teorici �e il motivo per il quale ho
inserito tra le soluzioni riportate questa: l’espansione conduce a un polino-
mio di grado 9 con coe�cienti che spesso non siamo abituati a maneggiare.
Per quanto ami allo stesso tempo un’altra frase di un altro mio professore
di Algebra � sulla Matematica:

”In Matematica vogliamo risolvere i problemi utilizzando meno
conti possibile.”

non posso fare a meno di essere soddisfatto dal gambetto dei metodi itera-
tivi apprezzabili dalla risposta di Dan.
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4 Commento finale

Sono presenti molte altre soluzioni che gli utenti stanno continuando a for-
nire: si va da metodi computazionali che non conoscevo, a diversi approcci
algebrici basati su osservazioni e trucchi particolarmente interessanti. Per
queste ulteriori soluzioni rimando quindi al collegamento riportato in biblio-
grafia/sitografia [�].

Oltre agli approcci presentati in questo articolo, invito i lettori pi �u navigati
a cercare e a proporre metodi di risoluzione dell’esercizio che facciano uso
della teoria dei corsi di Algebra � o � dell’Universit �a di Pisa. La mancanza di
un contributo di questo tipo in queste pagine lascia infatti, almeno a me, un
leggero amaro in bocca.

Tra l’assegnazione dell’incarico, la fase di ideazione e la stesura finale di
questo lavoro sono trascorsi all’incirca duemesi, durante i quali ho dedicato
qualche ora, in modo sporadico e nei momenti liberi, alla ricerca di nuove
soluzioni. Questo mi ha portato a riflettere su quanto sia importante non
sottovalutare il tempo investito nel risolvere o nel creare un problema.

Nonostante conoscessi gi �a un possibile metodo di risoluzione dell’eserci-
zio (circostanza che probabilmente ne giustifica la nascita) �e stato proprio
il semplice atto di pormi una domanda a permettermi di entrare in contat-
to con idee e strumenti per me nuovi, sconosciuti: uno su tutti il metodo di
Laguerre [�]. Strumenti che, se coltivati nel tempo, possono arricchire e di-
versificare il ”terreno” concettuale su cui ciascuno di noi cammina durante
un processo creativo o risolutivo in matematica.

Per concludere, desidero ringraziare tutte le persone che hanno contribui-
to a questo articolo: a partire da Luca, fino ai contributi forniti dagli utenti di
MSE.
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Teoria dei grafi e la ricerca

del cibo delle formiche
di Luca Bruni,Laureato magistrale a Pisa, adesso professore di Matematica e Fisica
presso Liceo Marconi, San Miniato

Viviamo in un mondo di connessioni. Ogni giorno, senza rendercene conto,
interagiamo con strutture che possono essere modellate come grafi. Intui-
tivamente, un grafo �e una rappresentazione di oggetti e delle loro relazioni:
�e una struttura matematica formata da nodi (o vertici) e collegamenti (o ar-
chi) tra di essi. �E uno strumento semplicema potentissimo, che permette di
modellare reti, connessioni, movimenti, interazioni. Obiettivo di queste pa-
gine, �e quello di introdurre alla teoria dei grafi e ai suoi algoritmi, mostrando
come questa disciplina permetta la modellizzazione e la ”spiegazione” del
comportamento di sistemi complessi. In particolarmodo ci occuperemo del
problema della ricerca di cibo delle formiche.

1 Giochi e grafi

In questa prima sezione riproproniamo alcuni giochi che erano stati proposti
in una vecchia rubrica del giornalino degli Open Days. Questi giochi, appa-
rentemente semplici, nascondono in realt �a una struttura di grafo che per-
mette di risolverli in modo elegante e semplice.

1.1 Il gioco dei 4 cavalli

Immaginate di avere quattro cavalli e la seguente, insolita, scacchiera.
Il problema che vogliamo porre �e il seguente:

Data la scacchiera in Figura �, �e possibile scambiare di posizione i cavalli
bianchi e quelli neri?
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Figura �: La scacchiera del gioco dei � cavalli.

Le regole sono semplici: il cavallo si muove come nel gioco degli scacchi
e pu �o muoversi solo su una casella vuota.

Prima di andare avanti con la soluzione, �e istruttivo provare a pensare da
soli a una strategia. Ricordatevi che fare dei tentativi �e a tutti gli e�etti una
strategia valida: spesso provando si scoprono regolarit �a inaspettate.

E se per caso riuscite nell’impresa, sapreste dire qual �e il numero minimo
di mosse necessarie a risolvere il rompicapo?

Spesso �e utile capire per quale motivo il problema risulta di�cile: in pri-
mis, il movimento degli scacchi a L pu �o confonderci, inoltre, la ristrettezza
della scacchiera non ci permette di muoverci liberamente. Cerchiamo in un
colpo solo di risolvere entrambi i problemi. Eticchiamo le caselle come in
Figura � e proviamo a pensare a una strategia.

Figura �: La scacchiera del gioco dei � cavalli con le caselle etichettate.

Costruiamo un grafo che catturi il movimento dei cavalli. I nodi del gra-
fo sono le caselle della scacchiera e gli archi sono i movimenti possibili dei
cavalli.

La soluzione di questo problema �e adesso immediata. I cavalli bianchi, ad
esempio, si sposteranno nelle caselleB eH, permetteranno il passaggio dei
cavalli neri e li sostituiranno nella loro posizioni. Anche la domanda per il nu-
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A E F

B

H C

L D I

G

Figura �: Il grafo che rappresenta i movimenti possibili dei cavalli sulla scacchiera.

merominimo dimosse, che sembrava particolarmente complessa, �e adesso
facilmente approcciabile!

1.2 Il gioco degli smartphone

Il gioco degli smartphone �e un interessante problema di disposizione in cui
salta agli occhi la teoria dei grafi e la sua utilit �a.

Dati 4 smartphone, �e possibile disporli in modo che ogni smartphone li
tocca tutti tranne un altro?

Una possibile soluzione �e quella di disporre i 4 smartphone in modo che
formino i lati di un ”quadrilatero” pi �u grande.

�

�

�

�

Figura �:Una possibile soluzione del gioco dei 4 smartphone.

La di�colt �a aumenta notevolmente se si aumenta il numero di smartpho-
ne. Ad esempio provate a risolvere lo stesso quesito con 5 smartphone:

Dati 5 smartphone, �e possibile disporli in modo che ogni smartphone li
tocca tutti tranne un altro?
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Dopo un po’ di tentativi, ci rendiamo conto che qualcosa non va e che sem-
bra che non sia possibile. Dobbiamo per �o trovare unmodo per formalizzare
questa impossibilit �a. La prima semplificazione che possiamo fare �e quella
di immaginare gli smartphone come nodi e i contatti tra di loro come dei
collegamenti tra nodi. Ecco che, astraendo il problema dalla realt �a fisica,
abbiamo una visualizzazione molto pi �u chiara di quello che sta accadendo.

�

�

�

�

Figura �: Il grafo associato alla soluzione del problema con 4 smartphone proposto sopra.

In questo modo, il problema si riduce a quello di trovare un grafo con 5
nodi in cui ogni nodo �e collegato a esattamente 3 nodi.

Proviamo a rispondere alla seguente domanda: quanti collegamenti devo-
no essere presenti nel grafo per soddisfare la condizione del problema?

Da ogni nodo partono 3 collegamenti, ma ogni collegamento collega due
nodi. Questo vuol dire che il numero totale di collegamenti �e uguale a 3 volte
il numero di nodi diviso 2. In altre parole, il numero totale di collegamenti �e
uguale a 3·5

2 = 15
2 che non �e un numero intero! Dunque questo grafo non pu �o

esistere e il problema dei 5 smartphone �e impossibile da realizzare!
Un semplice ragionamento di teoria dei grafi ci ha permesso di risolvere

elegantemente il problema che adesso, grazie all’idea introdotta, si presta
alla seguente generalizzaione:

Dati n smartphone con n � 3, �e possibile disporli in modo che ogni
smartphone li tocca tutti tranne un altro?

Lasciamo al lettore la soluzione del problema generale.

1.3 Non solo giochi

Nei due giochi precedenti abbiamo visto come l’utilizzo dei grafi permette
dimodellizzare due giochi apparentemente complicati che si rivelano essere
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molto pi �u comprensibili con il giusto formalismo.
Al di l �a dei giochi, i grafi sono uno strumento potentissimo per la model-

lizzazione di problemi complessi; nel seguito di queste note ci occuperemo
di alcuni esempi di applicazione della teoria dei grafi a problemi reali. In par-
ticolare, dopo aver formalizzato il concetto di grafo, ci so�ermeremo su due
applicazioni e sulle implicazioni pratiche che ne derivano:

• La ricerca del cammino minimo in un grafo pesato;

• La ricerca di cibo delle formiche.

2 Elementi di teoria dei grafi

In questa sezione, ci occupiamo di dare le definizioni fondamentali per la
teoria dei grafi.

Definizione �. Un grafo �e una coppiaG = (V,E), dove:

• V �e un insieme finito di elementi chiamati vertici o nodi;

• E ✓ {{u, v} | u, v 2 V, u 6= v} �e un insieme di archi, ciascuno dei quali
�e una coppia non ordinata di vertici.

A

B

C

D E

F

Figura �: Esempio di grafo.

Osservazione �. Nella definizione di grafo che abbiamo dato non ammetti-
mo l’esistenza di loop, ovvero di nodi che hanno un arco che parte e arriva
allo stesso nodo. Inoltre, non ammettiamo archi multipli, ovvero pi �u archi
che collegano la stessa coppia di nodi. In altre parole, ogni coppia di nodi
pu �o essere connessa da al massimo un arco.
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Definizione �. Un grafo pesato �e un grafo in cui a ciascun arco �e associato
un valore numerico, detto peso o costo. Formalmente, un grafo ponderato
�e una ternaG = (V,E,w), dove:

• (V,E) �e un grafo;

• w : E ! R �e una funzione che assegna un peso reale a ciascun arco.

A

B

C

D

� �

�
�

�

Figura �: Esempio di grafo pesato con pesi sugli archi.

Definizione �. Un cammino in un grafoG = (V,E) �e una sequenza di vertici
(v0, v1, . . . , vk) tale che per ogni i = 0, . . . , k � 1, l’arco {vi, vi+1} 2 E.

In altre parole, un cammino non �e altro che una sequenza di vertici in cui
ogni coppia consecutiva di vertici �e connessa da un arco.

Definizione �. Un cammino semplice o cammino senza cicli �e un cammino
in cui tutti i vertici sono distinti, cio �e vi 6= vj per ogni i 6= j.

Definizione�. Un grafo non orientato �e detto connesso se esiste un cammi-
no tra ogni coppia di vertici.

Definizione �. Un albero �e un grafo connesso e aciclico, cio �e che non con-
tiene cicli.

Nella prossima sezione, cominceremo a parlare di algoritmi sui grafi per
l’esplorazione e per la ricerca di cammini. Siamo in particolare interessati ai
cammini minimi.

Definizione�. Dato un grafo pesatoG = (V,E,w), un camminominimo tra
due vertici �e un cammino tale che la somma dei pesi degli archi attraversati
�e minima.
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A

B C

D E F

Figura �:Un albero: grafo connesso senza cicli.

3 Dalle formiche ai grafi: ottimizzazione tramite

intelligenza collettiva

3.1 Il problema della ricerca del cibo

Nel mondo naturale, uno dei comportamenti pi �u a�ascinanti �e quello delle
formiche alla ricerca del cibo. Nonostante siano organismi molto semplici,
prive di una vera intelligenza individuale, sono in grado di risolvere problemi
complessi grazie alla cooperazione e alla comunicazione indiretta.

In particolare, le formiche riescono a trovare percorsi ottimali tra il nido
e una fonte di cibo. Non possiedono mappe n �e un senso diretto delle di-
stanze, ma riescono a scoprire e sfruttare cammini e�cienti attraverso un
meccanismo di comunicazione chimica, basato sui feromoni.

Questo comportamento ha ispirato un intero filone dell’intelligenza arti-
ficiale chiamato Ant Colony Optimization (ACO), in cui si cerca di riprodur-
re artificialmente il comportamento delle colonie di formiche per risolvere
problemi di ottimizzazione su grafi.

Formalizzazione del problema

Il comportamento delle formiche pu �o essere modellato attraverso un grafo,
in cui:

• I nodi rappresentano posizioni fisiche (come il nido, i punti di passag-
gio e le fonti di cibo).

• Gli archi rappresentano i percorsi possibili tra le posizioni.

• Ogni arco ha un peso, che pu �o rappresentare una distanza, un costo, o
una di�colt �a nel percorrerlo.
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Il problema che ci poniamo �e trovare cammini convenienti tra due nodi del
grafo: il nodo sorgente (il nido) e il nodo obiettivo (una tra le fonti di cibo).

3.2 Algoritmo delle colonie di formiche - Ant Colony

Optimization o ACO

Principi generali

Il modello ACO si basa su alcuni principi fondamentali, ispirati al comporta-
mento reale:

�. Deposizione di feromoni: ogni formica, mentre percorre un cammino,
deposita una quantit �a di feromone sugli archi attraversati.

�. Evaporazione: i feromoni evaporano col tempo, riducendo la loro in-
tensit �a.

�. Scelta probabilistica: una formica decide quale nodo visitare in base a
una probabilit �a che dipende:

• dalla quantit �a di feromone presente sugli archi;
• da un’informazione euristica (ad esempio, l’inverso della distan-
za). Prenderemo proprio questo esempio nel prosieguo�.

�. Rinforzo positivo: i cammini migliori, ricevono pi �u feromoni in tempi
brevi, e diventano quindi pi �u attraenti per altre formiche.

L’idea �e quindi di simulare una colonia di formiche che esplora il grafo,
depositando feromoni e aggiornando le probabilit �a di scelta dei cammini in
modo iterativo, fino a convergere verso soluzioni ottimali o quasi ottimali.

Formalizzazione matematica

Sia ⌧ij(t) la quantit �a di feromone sull’arco (i, j) al tempo t (pi �u precisamen-
te all’iterazione t dell’algoritmo), e ⌘ij l’informazione euristica associata (ad
esempio ⌘ij =

1
dij

, dove dij �e la lunghezza dell’arco).
La probabilit �a che una formica attualmente in i scelga di muoversi verso il

nodo j �e data da:
�Si possono aggiungere parametri di pericolosit �a o a�dabilit �a del cammino. L’implementa-
zione �e analoga a quanto viene fatto con la distanza
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Pij(t) =
[⌧ij(t)]↵ · [⌘ij ]�P

k2Ni
[⌧ik(t)]↵ · [⌘ik]�

dove:

• Ni �e l’insieme dei nodi vicini a i ancora visitabili;

• ↵ regola l’influenza del feromone;

• � regola l’influenza dell’euristica.

Osservazione�. Laprobabilit �a �eunamedia pesata tra il feromonee l’euristi-
ca. Il parametro↵ controlla quanto le formiche si a�danoal feromone,men-
tre � regola l’importanza dell’euristica. Questo bilanciamento permette di
esplorare nuovi cammini senza trascurare quelli gi �a promettenti.

A

B

C

D

2

3

1

Figura �:Un grafo con nodoA e tre archi in uscita. Supponendo feromoni ⌧AB = 3, ⌧AC = 2,
⌧AD = 4 e usando l’inverso della distanza come euristica (⌘ij = 1/w), calcoliamo
le probabilit �a. I parametri utilizzati sono ↵ = 1 e � = 1. Il denominatore �e dato daP

k2NA
[⌧Ak]↵ · [⌘Ak]� = (3 ·1/2)+(2 ·1/3)+(4 ·1/1) = 1.5+0.6667+4 = 6.1667.

Le probabilit �a risultano: PAB ⇡ 0.24, PAC ⇡ 0.11, PAD ⇡ 0.65.

Aggiornamento dei feromoni:
Dopo che tutte le formiche hanno completato il loro cammino, la quantit �a

di feromone su ogni arco viene aggiornata secondo:

⌧ij(t+ 1) = (1� ⇢) · ⌧ij(t) +
mX

k=1

�⌧
(k)
ij

dove:

• ⇢ �e il tasso di evaporazione (0 < ⇢ < 1),
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• �⌧
(k)
ij �e la quantit �a di feromone depositata dalla k-esima formica.

La quantit �a depositata dalla k-esima formica �e proporzionale alla qualit �a
del percorso:

�⌧
(k)
ij =

(
Q
Lk

se l’arco (i, j) �e stato percorso dalla formica k
0 altrimenti

dove Lk �e la lunghezza totale del percorso della formica k, e Q �e una co-
stante positiva.

3.3 Implementazione e sperimentazione

Abbiamosperimentato il funzionamentodell’algoritmoACOsu vari grafipe-
sati, utilizzando Python e librerie come NetworkX per la gestione dei grafi e
Matplotlib per la visualizzazione. L’implementazione �e stata testata su grafi
di piccole e medie dimensioni.

Di seguito facciamo una panoramica dei dati che vengono raccolti ad ogni
esecuzione dell’algoritmo. Le immagini riportate mostrano il grafo iniziale,
il grafo con evidenziata la distribuzione del feromone sugli archi a una itera-
zione generica, la distribuzione percentuale dei feromoni nei vari archi a una
iterazione generica e l’andamento del cammino di una formica. Le formiche
partono dal nodo sorgente (evidenziato in rosso) e si muovono verso le fonti
di cibo (evidenziate in verde), depositando feromone lungo il percorso. Du-
rante le iterazioni, alcuni nodi vengonoeliminati ed altri si riaggiungono: l’al-
goritmo si adatta di conseguenza restituendo sempre ottimi risultati anche
in situazioni di grafo dinamico.

Pi �u nel dettaglio, l’algoritmo ACO �e stato implementato con vari parame-
tri per poter testare la sua e�cacia in diverse situazioni. Di seguito, ripor-
tiamo una breve descrizione dei parametri pi �u importanti. A questi, vanno
aggiunti creazioni di grafi casuali e configurazioni che regolano la dinamicit �a
del grafico.

• NUM-FORMICHE: Numero di formiche utilizzate nell’algoritmo. A ogni
iterazione, partono dal nido un numero di formiche pari al valore indi-
cato. Valori alti aumentano l’esplorazione in quanto la scelta dei per-
corsi, anche se vincolata alla probabilit �a, risulta pi �u ampia. Questo va a
scapito dell’esecuzione; valori bassi, invece, riducono la diversit �a delle
soluzioni.
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Figura ��:Grafo iniziale con pesi sugli ar-
chi. Il nodo rosso rappresenta il
nido, i nodi verdi le fonti di cibo

Figura ��:Distribuzione del feromone su-
gli archi all’iterazione ��. I colo-
ri pi �u spessi e accesi indicano la
presenza di feromone negli ar-
chi.

Figura ��:Andamento del percorso di una
formica nel corso delle iterazio-
ni del ciclo.

Figura ��:Distribuzione (percentuale) dei
feromoni nei vari archi.
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• NUM-ITERAZIONI: Numero totale di iterazioni dell’algoritmo. Valo-
ri alti migliorano la qualit �a della soluzione ma aumentano il tempo di
calcolo; valori bassi possono portare a soluzioni subottimali. Nelle ap-
plicazioni reali, le iterazioni vengono lanciate senza un valoremassimo
fissato, In questo modo, se il grafo cambia dinamicamente, i cammini
migliori vengono ricalcolati in tempo reale.

• ALFA ↵: Peso attribuito al feromone nella scelta del cammino. Valori
alti favoriscono lo sfruttamento dei cammini gi �a esplorati, rendendo il
comportamento delle formiche pi �u conservativo e focalizzato sui per-
corsi che hanno gi �a dimostrato di essere buoni. Questo pu �o accelera-
re la convergenza verso una soluzione, ma rischia di bloccare il siste-
ma in minimi locali. Valori bassi, invece, aumentano l’esplorazione di
nuovi cammini, favorendo una maggiore diversit �a nelle soluzioni, ma
rallentando la convergenza.

• BETA �: Peso attribuito all’euristica (es. distanza) nella scelta del cam-
mino. Valori alti danno maggiore importanza all’euristica, spingendo
le formichea scegliere cammini che sembranopromettenti inbasea in-
formazioni statiche come la distanza o il costo. Questo pu �o essere uti-
le in grafi con pesi ben definiti e a�dabili. Valori bassi bilanciano l’in-
fluenza tra feromone ed euristica, permettendo alle formiche di con-
siderare sia l’esperienza accumulata (feromone) sia le caratteristiche
intrinseche del grafo (euristica).

• EVAPORAZIONE ⇢: Tasso di evaporazione del feromone (valore tra �
e �). Questo parametro controlla la velocit �a con cui il feromone depo-
sitato sugli archi diminuisce nel tempo. Valori alti (vicini a �) fanno s�ı
che le tracce di feromone scompaiano rapidamente, favorendo l’esplo-
razione di nuovi cammini e riducendo l’influenza delle soluzioni prece-
denti. Valori bassi (vicini a �) mantengono pi �u a lungo le tracce di fero-
mone, ra�orzando i cammini gi �a esplorati e favorendo lo sfruttamento
delle soluzioni esistenti. La sceltadel valoredipendedal bilanciamento
desiderato tra esplorazione e sfruttamento.

• FEROMONE-INIZIALE: Quantit �a iniziale di feromone suogni arco. Va-
lori alti favoriscono una scelta pi �u uniforme inizialmente; valori bassi
aumentano la casualit �a.

• FEROMONE-DEPOSITO Q: Quantit �a di feromone depositata dalle for-
miche. Valori alti ra�orzano rapidamente i cammini migliori; valori
bassi favoriscono una convergenza pi �u lenta.
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• NODO-PARTENZA, NODI-DESTINAZIONE: Nodi che identificano il ni-
do e le fonti di cibo

3.4 Applicazioni dell’algoritmo ACO

L’algoritmo ACO �e stato applicato con successo a numerosi problemi di ot-
timizzazione combinatoria, tra cui:

• il problema del commesso viaggiatore (TSP): trovare il percorso pi �u
breve che permette a un venditore di visitare un insieme di citt �a una
sola volta e tornare al punto di partenza. Questo problema �e fonda-
mentale in logistica e trasporti, dove l’ottimizzazione dei percorsi pu �o
ridurre significativamente i costi operativi e i tempi di consegna;

• il routing in retidi telecomunicazione: ottimizzare il flussodi dati attra-
verso una rete per minimizzare ritardi e congestioni. Questo �e crucia-
le per garantire la qualit �a del servizio in applicazioni come streaming
video, chiamate VoIP e trasferimenti di file su larga scala;

• lapianificazionedi operazioni industriali: organizzare sequenzedi ope-
razioni permigliorare l’e�cienza produttiva e ridurre i tempimorti. Ad
esempio, nelle catene di montaggio, una pianificazione ottimale pu �o
aumentare la produttivit �a e ridurre i costi di manutenzione;

• il pathfinding in robotica e videogiochi: determinare il percorso otti-
male per un robot o un personaggio virtuale per raggiungere un obiet-
tivo evitando ostacoli. Questo �e essenziale per applicazioni come la
navigazione autonoma di robot in ambienti complessi o l’intelligenza
artificiale nei giochi per o�rire esperienze realistiche e coinvolgenti.

Il grande pregio dell’ACO �e la sua capacit �a di trovare buone soluzioni an-
che in contesti in cui non esistono strategie deterministiche e�cienti, sfrut-
tando la ridondanza, la parallelizzazione e la selezione delle soluzionimiglio-
ri.
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4 ACO vs algoritmi deterministici: Obiettivi e

Differenze

4.1 L’obiettivo dell’ACO non è la convergenza rigida

Adi�erenza dimolti algoritmi classici, il comportamento delle formiche non
punta a convergere rapidamente a una soluzione unica e definitiva. L’obiet-
tivo dell’ACO �e piuttosto mantenere un bilanciamento tra:

• Esplorazione di nuovi cammini potenzialmente migliori;

• Sfruttamento dei percorsi che si sono rivelati buoni.

Questa tensione tra curiosit �a e fiducia �e controllata dai parametri ↵, �, e ⇢
(rispettivamente peso del feromone, dell’euristica e della velocit �a di evapo-
razione).

In questo senso, una convergenza rapida e rigida su un cammino specifico
pu �o essere controproducente. Infatti, se le formiche si concentrano troppo
presto su un solo percorso, il sistema rischia di bloccarsi in unminimo locale,
perdendo la possibilit �a di esplorare soluzioni migliori.

4.2 Quando scegliere ACO rispetto a un algoritmo che

trova il cammino in modo deterministico?

In generale, l’algoritmo delle formiche �e preferibile quando:

• il grafo cambia nel tempo o contiene incertezze (es. tra�co, costi va-
riabili);

• si cercano molte buone soluzioni, non una sola perfetta;

• si vuole una soluzione distribuita e scalabile;

• si a�rontano problemi combinatori complessi (es. TSP, vehicle rou-
ting, scheduling).

In ambienti controllati e statici, un algoritmo deterministico rimane in-
superabile in termini di e�cienza e precisione. Ma in molti contesti reali,
la natura dinamica e flessibile dell’ACO lo rende una scelta pi �u realistica e
potente.
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Errori Legittimi
di Luca Bruni, Laureato magistrale a Pisa, adesso professore di Matematica e Fisica
presso Liceo Marconi, San Miniato

In questa sezione voglio analizzare insieme alcuni ”errori” che ho notato che
tendiamo a fare nel quotidiano e che cozzano enormemente con lamatema-
tica. Questi errori mi stanno particolarmente a cuore perch �e sono ci �o che di-
stinguono un ragionamento matematico da un ragionamento reale (e quasi
mi verrebbe da dire sociale o umano). Per la realizzazione di questa sezio-
ne vorrei ringraziare tutti gli amici matematici con cui mi sono potuto con-
frontare sul sociale e come i matematici ”leggono” questo sociale. Quello
che vorrei far trasparire da queste pagine �e che la matematica non �e solo un
insieme di tecniche e formule, ma un modo di pensare che ci aiuta a ricono-
scere (e a volte anche a correggere) questi errori; la matematica in un certo
senso ci aiuta a smascherare ragionamenti illogici quotidiani e a capirne la
fallacia, permettondoci (a volte) di non cadere in errori legittimi che possono
per �o condizionare in maniera fuorviante alcune nostre scelte.

1 Il tacchino induttivista di Russell

Tutto comincia con una filastrocca raccontata dal mio Prof. di matematica
durante superiori:

Un elefante si dondolava
Sopra un filo di una ragnatela
Trovando la cosa molto interessante
And �o a chiamare un altro elefante!

Due elefanti si dondolavano
Sopra un filo di una ragnatela
Trovando la cosa molto interessante
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Andarono a chiamare un altro elefante

Tre elefanti si dondolavano
Sopra un filo di una ragnatela
Trovando la cosa molto interessante
Andarono a chiamare un altro elefante

Quattro elefanti si dondolavano
Sopra un filo di una ragnatela...

L’argomento della lezione era l’induzione matematica e la filastrocca ser-
viva a mostrarne la filosofia:

• Base: c’ �e un elefante che si dondola

• Passo induttivo: se ci sonon elefanti che si dondolano, e l’n+1�esimo
viene chiamato, allora ce ne sono n+ 1 che si dondolano.

E il Prof. concludeva la filastrocca con una frase tipo ”ma allora a un certo
punto anche 1000000 elefanti si dondoleranno, ma non ho dovuto contarli
tutti!”.

La filastrocca mi �e sempre rimasta impressa e l’ho spessa utilizzata per
introdurre il concetto di induzione. Tuttavia, c’ �e un altro racconto, che il mio
Prof. allegava in combo a quanto gi �a presentato.

Fin dal primo giorno questo tacchino osserv �o che, nell’alleva-
mento in cui era stato portato, gli veniva dato il cibo alle � del
mattino. E da buon induttivista non fu precipitoso nel trarre con-
clusioni dalle sue osservazioni e ne esegu�ı altre in una vasta gam-
ma di circostanze: di mercoled�ı e di gioved�ı, nei giorni caldi e nei
giorni freddi, sia che piovesse sia che splendesse il sole. Cos�ı ar-
ricchiva ogni giorno il suo elenco di una proposizione osservativa
in condizioni pi �u disparate. Finch �e la sua coscienza induttivista
non fu soddisfatta ed elabor �o un’inferenza induttiva come que-
sta: ”Mi danno sempre il cibo alle � del mattino”. Questa con-
cezione si rivel �o incontestabilmente falsa alla vigilia di Natale,
quando, invece di venir nutrito, fu sgozzato.

Bertrand Russell, ����

Ho sempre trovato questa storia estramamente calzante e reale: l’idea,
ovviamente, �e che ci potesse spiegare come l’osservazione di un fenomeno
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che si ripete nel tempo non assicura niente rispetto all’accadere dello stesso
nel futuro e che per poter usare un ragionamente di tipo induttivo serva che
il passaggio n�esimo implichi in modo certo il passaggio n+ 1�esimo.

Leggendo del tacchino di Russell, ci viene da ridere e da sorridere,ma que-
sto tipo di errori sono comunissimi e li facciamo tutti i giorni, spesso sen-
za accorgercene. Vediamone alcuni (caloroso contributo di ChatGPT per le
idee).

Ecco alcuni esempi quotidiani di questo tipo di ragionamento fallace:

• Ogni anno mi arrivano gli auguri di compleanno, anche quest’anno ar-
riveranno sicuramente (e puntualmente non accade).

• Il mio telefono ha sempre retto tutta la giornata, batteria scarica alle
�� del pomeriggio.

• Studiando all’ultimomomento sono sempre passato, questa volta ba-
ster �a ancora (tipica frase per a�rontare il primo esame all’universit �a).

• Ho incontrato tre persone scortesi in quel negozio, tutti i commessi
sono scortesi.

• Il backup del computer ha sempre funzionato, non si corromper �a mai.

• Non homai bocciato un esame con questo metodo di studio, non boc-
cer �o mai.

2 Falsi miti su probabilità e statistica

Quando si entra nel ramo della probabilit �a, si fanno errori legittimi che pos-
sono derivare da due tipi di situazioni:

• la fiducia in ci �o che facciamo �e tale che a un certo punto smettiamo di
pensare matematicamente

• Poca comprensione dell’idea matematica che sottende il gioco

2.1 Prima o poi uscirà croce, no?

Proviamo a porci la seguente domanda

Una moneta viene lanciata per 10 volte e per le prime 9 volte �e
uscita testa. Cosa pensi uscir �a all’ultimo lancio?
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Il pensiero guida che siamo tentati di seguire �e qualcosa tipo ” �e successo
tante volte la stessa cosa, ora deve accadere il contrario”. La nostra idea
�e inoltre ra�orzata dal fatto che abbiamo ben chiaro che la probabilit �a che
esca testa o che esca croce �e la stessa! Quello che (purtroppo) non notiamo
�e che nel momento in cui lancio la moneta per la decima volta, non conta
nulla tutto ci �o che �e accaduto prima e la probabilit �a che esca testa o croce �e
la stessa. Si dice che gli eventi sono indipendenti e che la probabilit �a non ha
memoria!

Una domanda (molto) diversa sarebbe stata la seguente:

Unamoneta viene lanciata 10 volte, qual �e la probabilit �a che esca
10 volte testa?

In questo caso contano tutti i risultati usciti e non solamente l’ultimo e ci
rendiamo conto che la probabilit �a �e e�ettivamente bassa. Spesso tendiamo
a rispondere pensando alla seconda domanda quando per �o siamo di frotne
alla prima!

A conclusione di questa breve sottosezione, il lettore pu �o cimentarsi in
qualche piccolo quesito:

• Qual �e la probabilit �a che lanciando 10 volte una moneta esca sempre
Testa? Qual �e la probabilit �a che lanciando 10 volte unamoneta, esca la
sequenza TCCTTCTCTT?

• Ha pi �u senso puntare al Lotto nei numeri 1, 2, 3, 4, 5, 6 o su una sequen-
za diversa da essa?

2.2 La legge dei grandi numeri

Un altro aspetto divertente �e l’interpretazione della Legge dei Grandi Nu-
meri� che spesso viene citata e chiamaa in causa in una versione simile a
questa

Se una cosa ha la stessa probabilit �a, alla lunga le cose si sistema-
no e sono tutte equiprobabili

Ecco, la formulazione pu �o anche essere intuitivamente corretta ma il con-
cetto di ”alla lunga” �e piuttosto lontano dalla nostra vita quotidiana.

Ad esempio, tornando al nostro gioco testa o croce, ”alla lunga” dovran-
no essere uscite un numero circa uguale di pari e di croci, ma nulla vieta, ad
�qua aggiungi la reference alla vera �oegge dei grandi numeri
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esempio che il primo miliardo di uscite siano testa. Inoltre con circa ugua-
le, stiamo sottintendo una vicinanza di due quantit �a (il numero di Teste e il
numero di Croci), quando abbiamo fatto un numeromolto alto di lancia, ma
non stiamo richiedendo che sianouscite lo stesso numerodi teste e lo stesso
numero di croci.

2.3 Statistica emotiva

Entriamo adesso in un altro ramo forse troppo abusato: i dati e la statistica.
Mi voglio concentrare su uno degli errori che pi �u viene fatto a livello sociale,
bypassando quasi completamente il valore dei dati in questione. Partiamo
con degli esempi di situazioni e di implicazioni:

• Conosco una persona che ha vinto alla lotteria, dunque la probabilit �a
di vincere �e alta

• Ho sentito di qualcuno che ha avuto un incidente in quella strada, dun-
que quella strada �e pericolosa

• Mio nonno ha fumato tutta la vita ed �e vissuto fino a �� anni, pertanto
fumare non fa male (anzi forse permette di arrivare a �� anni di vita)

L’idea �e che attribuiamo maggiore rilevanza a singoli casi specifici piut-
tosto che a dati pi �u ampi. Spesso, il valore attribuito ha una connotazione
a�ettiva o personale che ci porta a sovrastimare l’importanza di un singolo
evento rispetto a una tendenza generale. I campioni statistici troppo picco-
li non sono davvero rilevanti, ma li carichiamo in maniera esagerata. Negli
esempi sopra citati nessuno si preoccupa dei dati reali, conta solamente ci �o
che �e accaduto ai propri amici/familiari.

Inmanieramolto simile si pu �o insinuare in noi anche il concetto di ”non ho
mai visto il contrario”. Finch �e non si hanno prove contrarie, diamo per certo
l’accadersi di un evento. Anche inquesto caso, il nostro campionedi osserva-
zioni �e troppo piccolo per poter trarre conclusioni a�dabili, ma nonostante
ci �o ci fidiamo ciecamente! Bu�o perch �e quando penso a una moneta che
�e uscita per 10 volte Testa non penso che dovrebbe uscire di nuovo Testa!
Strano come il nostro cervello udi meccanismi e regole diverse in contesti
diversi.
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3 È ovvio

Questa ultima sezione potrebbe risultare un po’ polemica per il lettore: l’in-
tento non �e assolutamente quello di esserlo. L’obiettivo �e invece di cercare
di spiegare come in matematica la frase ” �e ovvio” ha un significato comple-
tamente diverso dall’uso che ne facciamo nel quotidiano. Nel corso di studi
in Matematica, la frase si sente spesso, pronunciata da docenti prima e da
studenti poi e viene usata quasi per ”convincere” l’interlocutore che una cer-
ta a�ermazione sia vera senza doverla dimostrare; il docente (e in seguito lo
studnete), sa per �o bene che dietro questa a�ermazione c’ �e una serie di ra-
gionamenti e ipotesi che non sono state esplicitate, ma che fanno risultare
e�ettivamente ”ovvia” quella a�ermazione.

Nella vita quotidiana il ” �e ovvio” o il ” �e chiaro” spesso viene utilizzata per
evitare di entrare nei dettagli di un argomento o per semplificare una spie-
gazione, ma �e vero che tutto ci �o che �e ovvio, lo �e per tutti? E soprattutto, �e
davvero ovvio? Per essere pi �u chiaro in ci �o che vogloo dire, ho chiesto aiu-
to a ChatGPT ( �e ovvio di questi tempi, no?) che mi ha fornito, dopo qualche
tentativo, un piccolo testo che riporta in parte l’idea che volevo esprimere.
Eccolo qua:

A un certo punto qualcuno prova a usare il telecomando della te-
levisione. Lo prende, preme un tasto. Niente. Lo gira legger-
mente, ripreme. Funziona. ⌧Eh, �e ovvio che va puntato cos�ı�,
dice, senza pensarci troppo. Non lo dice per spiegare, lo dice co-
me si dicono le cose che non hanno bisogno di spiegazioni. ⌧In
che senso cos�ı?� chiede qualcuno.
⌧Verso la TV.�
⌧S�ı, ma prima era verso la TV anche prima.�
⌧S�ı, ma non era dritto.�
⌧Cosa vuol dire dritto?�
⌧Che deve essere allineato.�
⌧Allineato a cosa?�
A questo punto l’ovvio comincia a rallentare. Si prova a dire che
c’ �e un sensore, che il segnale deve arrivare, che se lo inclini trop-
po non funziona. Tutto vero. Ma allora viene fuori un’altra do-
manda: perch �e a volte funziona anche se non lo punti perfetta-
mente? Perch �e a volte rimbalza sul muro? Perch �e certi teleco-
mandi funzionano quasi sempre e altri no? Perch �e le pile scari-
che peggiorano la cosa? Perch �e basta spostarsi di mezzo metro
e improvvisamente non va pi �u?

��



� Commenti finali

L’“ �e ovvio” iniziale non era falso,ma era incompleto. Funzionava
finch �e nessuno chiedeva altro. Bastava la risposta grossolana:
“va puntato”. Appena si prova a essere un po’ pi �u precisi, ci si
accorge che dietro quel gesto semplice c’ �e un insieme di ipotesi,
condizioni, approssimazioni che nessuno ha mai davvero messo
in ordine. Il telecomando ora funziona, la TV �e accesa, quindi non
c’ �e nessun problema pratico da risolvere. E proprio per questo
l’ovviet �a resta intatta, come se avesse risposto davvero.

Questo �e solo un esempio banale, ma molto comune, di come il ” �e ov-
vio” nasconda spesso una serie di ipotesi e condizioni che non sono state
esplicitate. Avete mai pensato come sia ”ovvio” accendere una lampadina?
Mandare un messaggio? Fare zoom su una immagine?

In matematica, una spiegazione cos�ı non regge. Dire “ �e ovvio che funzio-
na” equivale a fermarsi alla prima risposta, quella che basta finch �e nessuno
fa altre domande. Ma la matematica comincia esattamente quando le do-
mande continuano. Quando si chiede non solo che cosa succede,ma perch �e,
in quali casi, con quali ipotesi, e cosa smette di essere vero se una di quelle
ipotesi viene meno. Non perch �e sia un esercizio di precisione fine a se stes-
sa, ma perch �e l�ı l’ovvio non �e una risposta: �e solo il punto da cui si scopre
quante cose stavamo dando per scontate.

4 Commenti finali

La matematica in generale non ti vuol dire che ti stai sbagliando. Ti invita a
riflettere. Ti chiede perch �e hai ragione. E se non sai rispondere, non importa,
non ti punisce: ti mostra invece che c’ �e ancora qualcosa da chiarire.

Questo atteggiamento, pi �u che i contenuti, �e ci �o che rimane. Studiarema-
tematica all’universit �a non significa diventare pi �u bravi a fare esercizi. Signi-
fica accettare che capire richiede tempo, che gli errori sono legittimi e che
sono parte del processo. Che non �e tutto ovvio o immediato, ma che con
pazienza si pu �o imparare a pensare in maneira diversa.
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Sfide matematiche da libri

notevoli

In questa rubrica, proponiamo una selezione di quesiti matematici tratti da
due libri ”classici” per gli appassionati di ProblemSolving: Problem-Solving
Through Problems di Loren C. Larson e Problem-Solving Strategies di Ar-
thur Engel. I problemi selezionati spaziano tra vari argomenti matematici,
o�rendo una sfida stimolante per gli studenti interessati amigliorare le loro
capacit �a di ragionamento e risoluzione dei problemi.

1. Scritture diverse dello stesso numero

Il numero 3 pu �o essere scritto come somma di uno o pi �u interi interi positivi,
contando l’ordine, nei seguenti modi: 3, 2+1, 1+2, 1+1+1. Quindi ci sono
4 = 22 scritture diverse di 3 come somma di interi positivi.

• Calcolare in quanti modi si pu �o scrivere il numero 6 come somma di 3
numeri

• Calcolare in quanti modi si pu �o scrivere il numero 6 come somma dim
numeri

• Calcolare in quanti modi si pu �o scrivere il numero n come somma dim
numeri

• Calcolare in quanti modi si pu �o scrivere il numero n come somma di 1
o pi �u numeri

2. Somme sul Triangolo di Tartaglia - Pascal

Sia dato il Triangolo di Tartaglia - Pascal come in Figura �. Si consideri, per
una rigan, la sommaSn,0 degli elementi in posizione 0 mod 3, la sommaSn,1
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degli elementi in posizione 1 mod 3 e la somma Sn,2 degli elementi in posi-
zione 2 mod 3 (in parole pi �u semplici, presa un riga, si faccia la somma dello
�-esimo, terzo, sesto oppure del primo, quarto, settimo etc.). Calcolare il
valore di S2026,1

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

Figura �: Triangolo di Tartaglia - Pascal. Elementi in posizione 0 mod 3 indicati inmaniera nor-
male, in posizione 1 mod 3 indicati con il sottolineato, in posizione 2 mod 3 indicati
con il grassetto.

3. Poligoni convessi e punti di intersezione

Sia dato un poligono convesso con 11 lati. Si supponga che le tre diagonali
non si intersechinomai in uno stesso punto. Si calcolino le seguenti quantit �a
(le formule sono generalizzabili per un qualsiasi n � 4):

�. Il numero di diagonali del poligono.

�. Il numero di punti di intersezione interni al poligono formati dalle dia-
gonali.

�. Il numero di regioni in cui le diagonali dividono il poligono.

4. Sequenze fantastiche e dove trovarle

• Considerare i numeri della forma: 10001, 100010001, 1000100010001.
Quanti zeri ha il pi �u piccolo numero primo di questa forma, se esiste?
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• Sia data la sequenza definita da a1 = a2 = a3 = 1 con ricorrenza
an+1 = 1+an�1an

an�2
per ogni n � 3. Mostrare che tutti i termini della

sequenza sono interi positivi.

• Trovare la sommadi 1
1·2·3 +

1
2·3·4 +

1
3·4·5 + . . .+ 1

98·99·100 . (Suggerimento:
pensare alle serie telescopiche, qualsiasi cosa siano).
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