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RELAZIONE SEMESTRALE

MATTHIAS LEOPOLD NICKEL

1. RESEARCH PROJECTS

1.1. Bounded volume denominators and the generalized Clifford—Severi
inequalities. This joint project together with Prof. Rita Pardini aims to eluci-
date the implications of the generalized Clifford-Severi inequalities developed by
Barja, Pardini and Stoppino [2] to the study of volumes of divisors on irregular
surfaces.

The notion of volume of a divisor D is a measure of growth of the dimension
of sections of multiples of D. Let X be a projective variety of dimension n. Then
the volume is defined as

R (O D
volx (D) := limsup ——(—X(m—)—)
m—oc mnr / n!

The study of Clifford-Severi inequalities, originating from a statement of Severi
{14] with incorrect proof which was later proved by Pardini in full generality [29],
has recently Jead to generalized Clifford—Severi inequalities taking the following
form.

Theorem 1. [2] Let X be a smooth complex projective variety of dimension n,
a: X — A a morphism into an abelian variety such that Pic’(A) injects into
Pic®(X), let L € Div(X) and let h(L) := min{h°(Ox(L) ® a*a) | a € Pic’(A)}.
Then

volx (L) > n! h2(L).

In [3] the authors show a connection between properties of the set of volumes of
divisors and the bounded negativity conjecture. The boundedness of the denom-
inators of volumes of divisors on a given complex projective surface is shown to
be closely related to the so called bounded negativity conjecture stating that the
self-intersection of all curves on a given surface is bounded below by a constant
depending only on the surface.

A weaker conjecture than the bounded volume denominator conjecture is the
following conjecture regarding lower bounds of the set of volumes on a surface.

Conjecture 2. Let S be a smooth projective complex surface. Then there cxists
a constant C > 0 depending only on S such that for all big L € Div(S) we have
vol X(L) Z C.

Note that strong statements on the non-vanishing of i imply the above con-
jecture for irregular surfaces by the Clifford-Severi inequality.
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Proposition 3. Let S be a smooth complex projective surface, a : S — A a
morphism into an abelian variety such that Pic®(A) injects into Pic®(S). Assume
that there exists a constant k > 0 such that for all but finitely many big divisors
L we have that hS(kL) # 0. Then Conjecture 2 holds true for S.

This leads to the following general question.

Question 4. Let X be a smooth complex projective variety of dimension n,
a: X — A a morphism into an abelian variety such that Pic®(A) injects into
Pic’(X), let L € Div(X). What are sufficient conditions for h(L) # 07

The goal of this project is to give (possibly partial) answers to the above
question. One possible direction here is to employ the non-vanishing theorems
for effective divisors as in [25, 9.4E].

1.2. Thue—Siegel principle for projective varieties in arbitrary dimen-
sion. The aim of this research project is to produce a Thue—Siegel principle for
projective varieties in arbitrary dimension. In the case of projective spaces this
can be seen as a first step towards an effective Schmidt subspace theorem. The
project combines tools coming from algebraic geometry, stochastics and Diophan-
tine approximations. This is a joint project together with Prof. Alex Kiironya
and Prof. Catriona Maclean.

Diophantine approximation is an important branch of number theory that is
mainly concerned with the study of the quality of approximations of real numbers
by rationals. It has strong connections to the theory of Diophantine equations
and therefore it is central to many of the most interesting questions in number
theory shaping the area today, among them famous open problems like the abc-
conjecture, which may be seen as a generalization of Wiles’s theorem and higher
dimensional analogues such as Vojta’s conjecture. Unfortunately the most impor-
tant theorems in Diophantine approximation, for example Roth’s theorem [30],
which states that for a given irrational algebraic number o and € > 0 there are
only finitely many coprime integers p € Z,q € N satisfying

P

a — S q_(2+6)’ (1)

still remain ineffective, in that there is no explicit way to bound the absolute value
of the solutions of inequality 1. This ineffectivity extends to many applications
of Diophantine approximation to Diophantine equations. There are, however,
effective methods in Diophantine approximation. To this day, Baker’s seminal
theorem on linear forms of logarithms [1] provides one of the most important
approaches to effectively solve Diophantine equations. Unfortunately this ap-
proach is not applicable to the simultaneous approximation of algebraic numbers
by rationals. Here one has to rely on Schmidt’s generalization of Roth’s theorem
[33], which is also ineffective. Another effective approach in the approximation
of a single algebraic number has been developed by Bombieri [6, 9, 7, 8, 5, 4].
This approach goes back to Thue [35], who proved his theorem on Diophantine
approximation using the realization that the existence of one good approximation
with large denominator excludes the existence of any other good approximation.
This is also the approach of the subsequent developments by Siegel [34], Dyson

[15] and finally Roth [30] (in Roth’s approach one even needs a large number
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of good approximations). Thue already noticed that it is possible to make the
proof effective if one has a single good approximation with large denominator.
However, in the proofs of Thue, Siegel and Roth this denominator needs to be so
large that suitable approximations have not been found. Bombieri realized that
the approach of Dyson is better suited for this argument and proceeded to give
the first examples where this argument, which he named Thue-Siegel principle,
gives an effective approximation theorem.

The proof of the theorems of Thue, Siegel, Dyson and Roth all consist of two
steps:

1. First an auxiliary polynomial P € Z[Xj, ..., X,] having a certain order of
vanishing at (a, ..., ) is constructed, which is then shown to vanish to a
suitable order at (p1/q1,. .., Pn/qn) Where p;/g; are solutions to incquality
L.

2. Next, one shows that there exists an upper bound for the order of P at the
point (p1/q1, - - -, Pn/¢n) Obtaining a contradiction. This upper bound may
be either of geometric (Dyson’s lemma [15] or rather its generalization by
Esnault and Viehweg [16]) or of arithmetic nature (Roth’s lemma [30] and
Faltings’s product theorem [19]).

The advantage of the geometric approach is that the upper bound for the order
of P does not depend on the the point (p1/q1,...,Pn/qn). Therefore, it is enough
to find n—1 good approximations to effectively bound the denominator of all other
good approximations. This is in contrast to the arithmetic approach where n —1
good approximations with large denominators have to be found. The problem is
that no higher dimensional generalization of Dyson’s lemma is known.

Positivity concepts for divisors play a crucial role in algebraic geometry. The
original and most important, notion of positivity is ampleness. Its significance
comes partially from the fact that it has numerical, cohomological and geometric
interpretations. Ampleness is not invariant under birational maps, hence a bira-
tional version of it is of great interest. This yields a weaker form of positivity
which is called bigness: a divisor D is big iff a multiple of it induces a morphism
into projective space that is birational onto its image. There is also a cohomolog-
ical interpretation of bigness: D is big iff D has positive volume. Positivity can
also be studied locally: in [13] Demailly introduces an invariant that measures
the local positivity of a divisor at a point, the Seshadri constant, in order to study
the Fujita conjecture. The behavior of Seshadri constants, in particular finding
lower bounds, and their connections to classical problems as Nagata’s conjecture
have developed into a subject of intensive study.

Newton-Okounkov bodies provide a valuable tool for studying positivity prop-
erties of a big divisor L on a complex projective variety X. Motivated by Ok-
ounkov’s work in representation theory [28], they were defined in [24] and [26]
and have developed to a topic of interest in current research. Let d be the di-
mension of X and let v be a rank d valuation on the function field of X. Then
the Newton—Okounkov body of L with respect to v is the convex body

A, (L) := closed convex hull of (U %v (H° (Ox (kL)))) c R%
keN
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Newton—Okounkov bodies have lots of significant applications to combinatorics,
representation theory, mathematical physics and Diophantine approximation. In
the case of surfaces it is shown in [26] that they are almost rational polygons and
can be computed using variation of Zariski decomposition.

One of the the main contributions of the seminal paper of Faltings and Wiistholz
[20] is the observation that the constants showing up in Diophantine approxima-
tions on projective varieties can be obtained as the expected value of certain
random variables coming from filtrations on the graded ring of sections of a di-
visor. Later [21, 17, 12, 18] showed that these constants can also be obtained
via various geometric invariants. More recently, Mckinnon and Roth [27] showed
how Diophantine approximation constants measuring how well a given algebraic
point on a projective varicty can be approximated by rational points are related
to volumes of divisors. This result is extended in [22] to the function field case
and in [31], [32] and [23] to the more general case where not only points but closed
subschemes are approximated.

In the paper [10] the authors develop a theory of concave transforms and Ok-
ounkov bodies of filtered linear series and show how the concave transforms de-
termine the volume of the linear series associated to the filtration [10, Theorem
1.11]. One of the aims of this project is to model vanishing along subvarieties
in a probabilistic way: in the above setting every filtration on the graded ring
of sections of a divisor yields a random variable on the Newton—Okounkov body
(the concave transform associated to the filtration). Here already the case where
the filtration is given by order of vanishing at a given point on a surface appears
to be highly nontrivial. In particular, the expected value of the resulting ran-
dom variable and its variance seem to contain substantial geometric information.
The Chebyshev inequality, which gives a bound on the distribution function of
a random variable involving its expected value and covariance matrix, can then
be used to imply interesting bounds on the volume function of the linear series
involed.

There is another aspect of the stochastic point of view that is needed in Dio-
phantine approximation arguments and is also present in [20] (although it is used
for different random variables). The construction of polynomials in many vari-
ables or more generally sections of divisors vanishing on products of varieties can
be reinterpreted using the above formulation. It turns out that the distribution
of the sum of the associated random variables gives us a lower bound on the
dimension of the space of sections vanishing on the product. It is an aim of this
project to elucidate this specific aspect as a better understanding of the difference
between the distribution of the sum of the random variables and the dimension of
the space of sections vanishing on the product would enable us to use tools from
stochastics such as the Berry—Esseen inequality for the central limit theorem,
which would then yield a good estimate of the dimensions in question.

As outlined above, most results on Diophantine approximation rely on the
construction of an auxiliary polynomial having a certain order of vanishing or
more generally having the property that certain differential operators applied to

it vanish at given points. It is a very important point that the vector space of
suitable auxiliary polynomials or more generally sections of divisors on a variety
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can be interpreted as the space of sections of a divisor on a blowup of the variety.
This provides a concrete link to positivity in algebraic geometry.

One of the main innovations of this project is to use an approach that grew
out of Faltings’s proof of the Mordell-Lang conjecture [19] using information on
positivity of divisors on blowups to study the vector spaces of suitable auxiliary
polynomials. Consider the space V of sections of a divisor having large index at
the approximated points and the subspace W of V' of sections having small index
at a suitably good rational approximation. Faltings’s Siegel lemma then provides
a section in W with suitably bounded coefficients in Z under the condition that
dim(W) < dim(V). It turns out that it is in general hard to show this last
condition. Here we put forth two different strategies to solve this problem. One
is the study of the sums of the random variables outlined above and the relation to
the dimensions in question. Another possibility is to use the approach of Esnault
and Viehweg [16] in their proof of Dyson’s lemma. It is not clear if the whole
proof can be generalized to higher dimensions, however, the main ingredient is a
statement about the weak positivity of a certain sheaf and this specific argument
has been generalized by Wessler [36]. The strategy is then to proceed as in the
proof of Esnault and Viehweg and show that a suitable divisor on a blowup is
nef which would then imply the needed inequality dim(W) < dim(V) by the
asymptotic Riemann—-Roch theorem.

The novelty of this approach is that it avoids providing a zero estimate: only
a suitable bound on the dimension of the space of sections with given index is
nceded. As a conscquence it is cnough to have a partial understanding of the
volume function on blowups of the variety in question. Further, this approach is
geometric and therefore (contrary to the existing approaches in higher dimension)
makes it possible to derive a higher dimensional Thue-Siegel principle of the same
quality as in Bombieri’s result.

The potential impact of the this project is large in that the number of effec-
tive results in Diophantine approximation and Diophantine equations is quite
small and any new result would present a breakthrough in this important area
of research. Just to name an example, the famous theorem of Faltings regarding
the rational points of smooth algebraic curves of genus greater or equal to 2 re-
mains ineffective. Even if one only considers integral points of these curves in an
affine open subset (Siegel’s theorem), no effective way of obtaining all solutions is
known. By work of Corvaja and Zannier [11] it is known that Siegel’s theorem can
be proven using the Schmidt subspace theorem on simultaneous approximations.
It is therefore a very important problem to extend our knowledge on effective ap-
proximation in higher dimension with the implication that this will also extend
our understanding of effectivity in Diophantine equations.

2. RESEARCH ACTIVITIES

2.1. Resarch Talks. I gave the talk "Local positivity and effective Diophantine
Approximation” at Universita di Pisa.

2.2. Conferences. I participated at the conferences ”Classical Elegance: the
Geometry of Algebraic Varieties” in Cortona and ”La grandezza dei punti piccoli”
at Universita di Pisa.
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