We present a model originally inspired by the study of a unicellular slime mold (called Physarum Polycephalum). The model couples a diffusion equation with an ODE imposing a transient dynamics postulating that the diffusion coefficient grows with…
Eventi
(Cancellato) Characterizing o-minimal groups in tame expansions of o-minimal structures – Panteleimon Eleftheriou (University of Konstanz)
Il seminario è stato cancellato. Sarà riprogrammato in altra data. Alessandro Berarducci P. Eleftheriou, “Characterizing o-minimal groups in tame expansions of o-minimal structures”, Journal of the Institute of Mathematics of Jussieu, Online first…
Il Teorema di Tognoli – Enrico Savi (Università di Trento)
Uno dei principali argomenti di interesse della geometria algebrica reale è lo studio degli insiemi algebrici e, in particolare, degli spazi topologici che ammettono modelli algebrici. In questo seminario descriverò alcune tecniche classiche della…
Obstructing sliceness of knots through branched covers – Andras Stipsicz (Alfréd Rényi Institute of Mathematics, Budapest)
slice knots (bounding smooth disks in the 4-space) play an important role in knot theory. They can be studied through examining the branched cover of the three-sphere along the given knot. In the lecture we describe two results around these…
Brauer groups of moduli of hyperelliptic curves, via cohomological invariants – Roberto Pirisi (KTH Stockholm)
We use the theory of cohomological invariants for algebraic stacks to completely describe the Brauer group of the moduli stacks $H_g$ of genus $g$ hyperellitic curves over fields of characteristic zero, and the prime-to-$\mathsf{char}(k)$ part in…
Topological realization over $\mathbb{C}((t))$ via Kato-Nakayama spaces – Mattia Talpo (Università di Pisa)
I will report on some joint work with Piotr Achinger, about a “Betti realization” functor for varieties over the formal punctured disk $\mathsf{Spec}\mathbb{C}((t))$, i.e. defined by polynomials with coefficients in the field of formal Laurent…
Efficient iterative methods for the solution of Generalized Lyapunov Equations: Block vs. point Krylov projections, and other controversial decisions – Daniel Szyld (Temple University)
There has been a flurry of activity in recent years in the area of solution of matrix equations. In par- ticular, a good understanding has been reached on how to approach the solution of large scale Lya- punov equations. An effective way to solve…
Positivity of holomorphic vector bundles – Filippo Fagioli (Università di Roma “La Sapienza”)
Tra le nozioni di positività in geometria complessa è di particolare interesse quella di ampiezza. Un fibrato in rette su una varietà complessa si dice ampio se una sua qualche potenza tensoriale fornisce un embedding della varietà in uno spazio…