Il teorema dell’indice di Poincaré-Hopf…
Eventi
Introduction to Legendrian 2-bridge knots – Viktória Földvári (Elte University, Budapest)
On an oriented 3-manifold we can define a contact structure, that is, a completely non-integrable plane field in the tangent bundle of the manifold. Regarding such a structure we consider knots that are everywhere tangent to this plane field. After…
Entropia e finitezza per gruppi con scomposizioni acilindriche – Filippo Cerocchi (Università di Roma)
Si consideri la famiglia dei gruppi finitamente generati che ammettono una scomposizione k-acilindrica, non-elementare (l’acilindricità è da intendersi nel senso di Sela). Mostreremo l’esistenza di una funzione (esplicita) f( – ;k):N—>N,…
Notions of complexity for minimal subvarieties – Alessandro Carlotto (ETH Zurich – Department of Mathematics )
Notions of complexity for minimal subvarieties…
Entropia minimale di 3-varietà – Erika Pieroni (Università di Roma La Sapienza)
Abstrat: In questo seminario introdurremo la nozione di entropia minimale di una varietà. Proseguiremo calcolando l’entropia minimale di una qualsiasi 3-varietà orientabile, a partire dal dato della sua scomposizione in primi e della scomposizione…
Il Teorema di Hindman sull’esistenza di insiemi infiniti con somme monocromatiche – Mauro Di Nasso (Dipartimento di Matematica, Università di Pisa)
Il Teorema di Hindman sull’esistenza di insiemi infiniti con somme monocromatiche…
On the existence of solutions to weakly coupled elliptic system with critical growth – Angela Pistoia (Università la Sapienza, Roma)
Titolo On the existence of solutions to weakly coupled elliptic system with critical growth Abstract We consider a critical weakly coupled elliptic systems in a domain D in R^N with N=3,4 or in the whole space. We prove the existence of positive…
An introduction to ideal simplicial volume – Marco Moraschini (Università di Pisa)
The simplicial volume is a homotopy invariant of compact manifolds introduced in 1982 by Gromov in his pioneering paper “Volume and Bounded Cohomology”. Roughly speaking, the simplicial volume measures how difficult is to describe a manifold in…
Infinity structures and higher products in rational homotopy theory – José Manuel Moreno-Fernández (Universidad de Málaga)
The goal of this talk is to understand how L-infinity structures on the rational homotopy groups of a simply connected space behave with respect to the higher Whitehead products. To do so, I will give a self-contained introduction to the relevant…
On classical, extended, and rational Krylov and the associated QR algorithms – Raf Vandebril (KU Leuven)
In this lecture we will discuss three main classes of Krylov and QR type methods: the classical, the extended, and the rational versions. We will initially focus on the classical QR method and reintepret all ingredients such as: associated Krylov…