TBA…
Eventi
Gruppi con topologia di Zariski cofinita – Dikran Dikranjan (Università di Udine)
La topologia di Zariski ${\mathfrak Z}_G$ di un gruppo $G$, fu introdotta esplictamente da R. Bryant [2] sotto il nome verbal topology, ma implicitamente suggerita da Markov [6]. I sottoinsiemi di $G$ della forma $\{x\in G: g_1 x^{\varepsilon_1} g_2…
Computing linear relations between 1-periods – Emre Sertoz (Leiden University)
I will sketch a modestly practical algorithm to compute all linear relations with algebraic coefficients between any given finite set of 1-periods. This is based on the “qualitative description” of these relations by Huber and Wüstholz. We combine…
TBA – Adele Jackson (University of Oxford)
TBA…
Scaling methods for stochastic chemical reaction networks – Lucie Laurence (INRIA)
In this talk we investigate stochastic chemical reaction networks (CRNs) with scaling methods. This approach is used to study the…
Introduzione ai tensori: dalle applicazioni alle sfide contemporanee – Martina Iannacito (KU Leuven)
Per oltre un secolo, i matematici sono stati affascinati dallo studio delle proprietà di famiglie di matrici. Gli oggetti con…
Workshop on “Combinatorial Algebraic Topology and Applications”
Directed graphs and simplicial complexes are ubiquitous objects in Mathematics and Science in general. Due to their simplicity and flexibility…
Presentazione del libro “La matematica che trasformò il mondo: il Liber abbaci di Leonardo Pisano”
Nel quadro delle iniziative proposte dal Comune di Pisa e dall’Università per “Fibonacci Day” (23 novembre: per gli anglosassoni 11.23 …) alle…
Local-to-global results for symplectic resolutions of singularities – Daniel Kaplan (University of Hasselt)
Davison proved that the moduli space of objects in a k-linear 2-Calabi–Yau category is formally locally a quiver variety. Bellamy–Schedler gave a classification of which quiver varieties admit symplectic resolutions of singularities, and more…
Quasiminimality of complex powers – Francesco Gallinaro (Albert-Ludwigs-Universität Freiburg)
A conjecture due to Zilber predicts that the complex exponential field is quasiminimal: that is, that all subsets of the complex numbers that are definable in the language of rings expanded by a symbol for the complex exponential function are…