Venue
Sala Seminari (Dip. Matematica).
Abstract
Le strutture di regolarità, introdotte da M. Hairer in A theory of Regularity Structures, hanno permesso di risolvere in modo robusto una ricca classe di equazioni alle derivate parziali stocastiche (SPDEs) mal poste. In questa presentazione vogliamo mostrare come sia possibile utilizzare tecniche di calcolo di Malliavin al fine di indagare proprietà probabilistiche delle soluzioni di tali equazioni. Ci concentreremo su un esempio standard della teoria, l’equazione parabolica di Anderson generalizzata (gPAM), e vedremo come si possa dimostrare l’esistenza della densità rispetto alla misura di Lebesgue per la sua soluzione valutata ad un punto dello spazio tempo.