Venue
Sala Seminari (Dip. Matematica).
Abstract
Many questions concerning models in quantum mechanics require a detailed analysis of the spectrum of the corresponding Hamiltonian, a linear operator on a suitable Hilbert space. Of particular relevance for an understanding of the low-temperature properties of a system is the structure of the excitation spectrum, which is the part of the spectrum close to the spectral bottom. We present recent progress on this question for bosonic many-body quantum systems with weak two-body interactions. Such system are currently of great interest, due to their experimental realization in ultra-cold atomic gases. We investigate the accuracy of the Bogoliubov approximations, which predicts that the low-energy spectrum is made up of sums of elementary excitations, with linear dispersion law at low momentum. The latter property is crucial for the superfluid behavior the system.