The famous Sato-Tate conjecture for elliptic curves defined over a number field (without complex multiplication) predicts the equidistribution of Frobenius…
Categoria evento: Number Theory Seminar
The degree of Kummer extensions of number fields – Flavio Perissinotto (University of Luxembourg)
Under the Generalized Riemann Hypothesis, densities of prime ideals of a number field $K$ for which a given subgroup $G$…
Explicit integral Galois module structure of weakly ramified extensions of local fields – Henri Johnston (Univiesity of Exeter)
Let $L/K$ be a finite Galois extension of complete local fields with finite residue fields and let $G={\rm Gal}(L/K)$. Let $G_{1}$ and $G_{2}$ be the first and second ramification groups. Thus $L/K$ is tamely ramified when $G_{1}$ is trivial and we…
Divisibility questions in commutative algebraic groups – Laura Paladino (Università di Pisa)
Venue Sala Seminari (Dip. Matematica). Abstract…
On the local-global divisibility and the Tate-Shafarevich group – Gabriele Ranieri (Pontificia Universidad Catolica Valparaiso)
On the local-global divisibility and the Tate-Shafarevich group. Abstract: Let k be a global field and let A be a commutative algebraic group defined over k. Consider the following question : Problem. Let P be in A(k) and let q be a positive…
Contare punti di altezza limitata – Fabrizio Barroero (SNS di Pisa)
L’altezza di Weil è una funzione che misura la complessità aritmetica di un numero algebrico. Un famoso teorema, dovuto a Northcott, assicura la finitezza degli insiemi di vettori di numeri algebrici di grado e altezza uniformemente limitati. E’…